

Recognizing that conservation of the global environment is the top-priority challenge for the world's population, Nippon Thompson will conduct its activities with consideration of the environment as a corporate social responsibility, reduce its negative impact on the environment, and help foster a rich global environment.

ISO 9001 & 14001 Quality system registration certificate

- The specifications and dimensions of products in this catalog are subject to change without prior notice.
- When these products are exported, the exporter should confirm a forwarding country and a use, and, in case of falling under the customer's requirements, take necessary procedures such as export
- · Although all data in this catalog has been carefully compiled to make the information as complete as possible, NIPPON THOMPSON CO., LTD. shall not be liable for any damages whatsoever, direct or indirect, based upon any information in this catalog. NIPPON THOMPSON CO., LTD. makes no warranty, either express or impiled, including the impiled warranty of merchantability or fitness for a
- Reproduction and conversion without permission are prohibited.

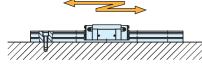
Good Environment and Good Quality

IKO Linear Motion Rolling Guides are used with satisfactory results for various applications requiring precision positioning such as semi-conductor manufacturing equipment, large sized machine tools, industrial robots, and precision equipment.

In contrast to conventional rolling bearings used in rotating parts, Linear Motion Rolling Guides are the products applicable to plane sliding surfaces, and meet the increasing needs for linear motion and precision positioning in machines and equipment.

Linear Way and Linear Roller Way of Rail Guide Type, Linear Ball Spline of Shaft Guide Type, and other products, recognized for their high quality and excellent features, are available.

I-1



					C-Lube Maintenance Free Series			
BLUE	w (13 3		5	Ball Type Miniature Series Super small-size linear motion rolling guide produced by original small sizing technology	C-Lube Linear Way ML ML : Standard type MLF : Wide type	Linear Way L LWL : Standard type LWLF : Wide type		
General Catalog BLUE				Ball Type Miniature Value Series Economical linear motion rolling guides without changing the superior performance of Ball Type Miniature Series	C-Lube Linear Way MLV MLV			
ıral Ca	IKD LINEAR MOTION ROLLING GUIDE NUE		1	Ball Type Low Profile/Light Weight Series Super low profile and super light weight linear motion rolling guides with high load capacity	C-Lube Linear Way MV MV			
Gene			ψ 0	Pall Type Compact Series Versatile linear motion rolling guides pursuing compactness in every aspect	ME : Flange type mounting from bottom MET : Flange type mounting from top MES : Block type mounting from top	Linear Way E LWE : Flange type mounting from bottom LWET : Flange type mounting from top LWES : Block type mounting from top	LWEQ : Flange type mounting from bottom LWETQ : Flange type mounting from top LWESQ : Block type mounting from top	
Series	LINEAR WAYS	Linear Way	0	Ball Type High Rigidity Series High rigidity linear motion rolling guides designed to evenly support high load capacity by incorporating large-diameter balls	C-Lube Linear Way MH MH : Flange type mounting from bottom MHT : Flange type mounting from top MHD : Block type mounting from top MHS : Compact block type mounting from top	Linear Way H LWH : Flange type mounting from bottom LWHT : Flange type mounting from top LWHD : Block type mounting from top LWHS : Compact block type mounting from top LWHY : Horizontal mounting type		
	SAN A	Linear Roller Way		Ball Type Wide Rail Type Series Linear motion rolling guide suitable to single-row use due to having resistance to across-the-width moment load by using a wide track rail		Linear Way F LWFH: Flange type mounting from top / bottom LWFF: Flange type mounting from top / bottom LWFS: Block type mounting from top		
Linear Motion Rolling Guide	/ \		Y	Ball Type U-Shaped Track Rail Series Linear motion rolling guide of high track rail rigidity with U-shaped track rail	C-Lube Linear Way MUL MUL : Small type	Linear Way U LWU ···B : Standard ball-retained type		
ion Ro	Recorded in CAT-1604E			Roller Type Linear motion rolling guide that has achieved the highest level of performance in all characteristics utilizing the roller's superior characteristic	C-Lube Linear Roller Way Super MX MX :Flange type mounting from top / bottom MXD :Block type mounting from top MXS :Compact block type mounting from top MXN :Low profile flange type mounting from top MXNS :Low profile block type mounting from top	Linear Roller Way Super X LRX : Flange type mounting from top / bottom LRXD : Block type mounting from top LRXS : Compact block type mounting from top		
ır Moti				Roller Type Roller type linear motion rolling guide with cylindrical rollers in four-rows		Linear Roller Way X LRWX : Block type mounting from top LRWXH : Flange type mounting from bottom		
Linea	- /			Module Type Minimum compact linear motion rolling guide with both a track rail and slide member provided		Linear Way Module LWLM: Ball type small type LRWM: Roller type		
log RED		Crossed Roller Way	and six	Crossed Roller Way Linear motion rolling guide incorporating a roller cage between two ways whose two V-shaped surfaces are used as track groove		Anti-Creep Cage Crossed Roller Way CRWG Anti-Creep Cage Crossed Roller Way Unit CRWUG	Anti-Creep Cage Crossed Roller Way H CRWG···H Crossed Roller Way Unit CRWU / CRWU···R / CRWU···RS	Crossed Roller Way CRW : Standard type CRWM: Module type
General Catalog	IX LINEAR MOTION ROLLING GUIDE HED	Linear Slide Unit		Linear Slide Unit Light weight, small, and compact linear motion rolling guide that has achieved light and smooth motion		High Rigidity Precision Linear Slide Unit BWU	Precision Linear Slide Unit BSP: Limited linear motion type BSPG: Built-in rack & pinion type BSR: Endless linear motion type	Linear Slide Unit BSU···A
Guide Series Ge	LINEAR WAYS	Linear Ball Spline	A Popularies	Linear Ball Spline Linear motion rolling guide capable of performing linear motion and torque transmission using an external cylinder along the spline shaft.	C-Lube Linear Ball Spline MAG MAG : Standard type MAGF : Flange type	Linear Ball Spline G LSAG : Standard type LSAGF : Flange type		
ing Guide	900	Linear Bushing		A wide variety of linear motion rolling guides facilitating the rolling motion in bush guide portion		Linear Bushing G LMG	Linear Bushing LM/LME/LMB	Miniature Linear Bushing LMS
Linear Motion Rolling	Presided in OAT 10055	Stroke Rotary Bushing	Share the state of	Stroke Rotary Bushing Linear motion rolling guide enabling the rolling motion and rotary and linear motion in axial direction		Stroke Rotary Bushing ST : Ordinary type ST···B : For heavy load	Miniature Stroke Rotary Bushing STSI : Assembled set with a shaft STS : Assembled set without a shaft	Stroke Rotary Cage BG
Linear	Recorded in CAT-1605E	Roller Way & Flat Roller Cage	Flat Guide Type	Roller Way & Flat Roller Cage High accuracy linear motion rolling guide providing high rigidity in load direction		Roller Way RW/SR/GSN	Flat Roller Cage FT : Single row type FTW···A : Double row angle type	

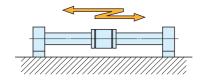
Types of Linear Motion Rolling Guides ——

Endless linear motion

The Rail Guide Type achieves linear motion along a rail. This product can receive a complex load and features high performance, excellent total balance and easy handling.

Linear Way

Limited linear motion



Limited linear motion + rotation

Limited linear motion

Flat Roller Cage

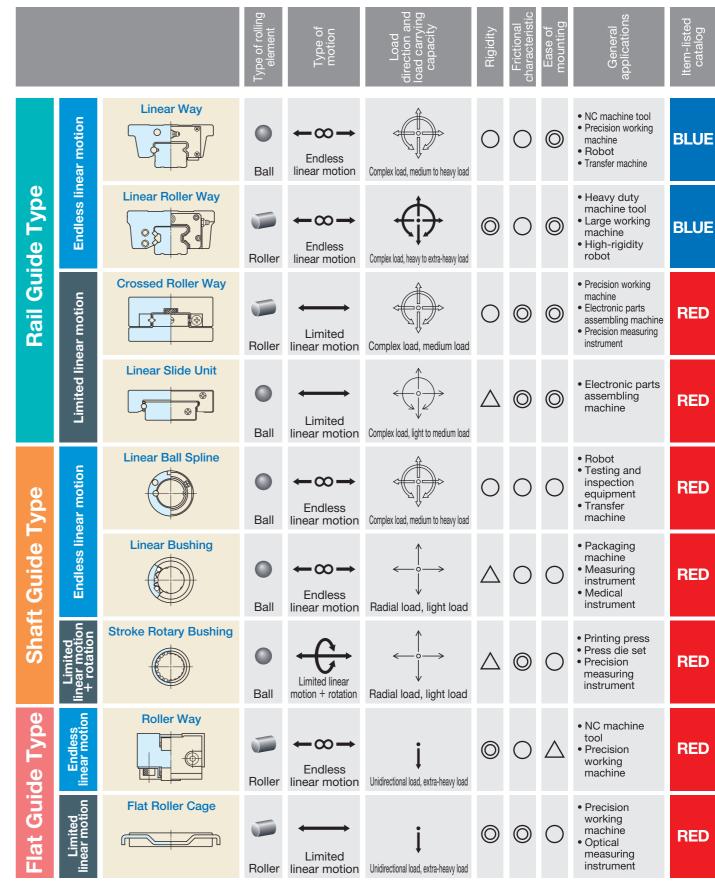
The Shaft Guide Type achieves linear motion along a shaft. This product is easy to handle and suitable for relatively low load conditions. Some shaft guide products can achieve both rotation and reciprocating linear motion.

The Flat Guide Type achieves linear

motion on a surface. This product can

receive only a unidirectional load but

feature high rigidity in the load direction.



Specifications of Linear Motion Rolling Guides—

Code description

© Excellent

Good

Fair

Guide

Guide

Rail

Guide

Shaft

LINEAR MOTION ROLLING GUIDE SERIES RED INDEX

Crossed Roller Way

CRWG CRWG···H CRW CRWM

Linear motion rolling guide incorporating a roller cage between two ways whose two V-shaped surfaces are used as track groove

Linear Bushing

LMG LM LMS

A wide variety of linear motion rolling guides facilitating the rolling motion in bush guide portion

Crossed Roller Way Unit

CRWUG CRWU

A linear motion rolling guide with high rigidity table and bed incorporating CRWG and CRW guides for excellent load balance.

Stroke Rotary Bushing

ST STSI BG

Linear motion rolling guide enabling the rolling motion and rotary and linear motion in axial

High Rigidity Precision Linear Slide Unit

BWU

Light weight, small, and compact linear motion rolling guide that has achieved light and smooth motion

Roller Way

RW SR GSN

High accuracy linear motion rolling guide providing high rigidity in load direction

Precision Linear Slide Unit

BSP BSPG BSR BSU

Light weight, small, and compact linear motion rolling guide that has achieved light and smooth motion

Flat Roller Cage

FT FTW···A

High accuracy linear motion rolling guide providing high rigidity in load direction

Linear Ball Spline

MAG LSAG

Linear motion rolling guide capable of performing linear motion and torque transmission using an external cylinder along the spline shaft.

U.S. PATENTED Crossed Roller Way Linear Ball Spline No. 8360644 6190046 5967667 8142079 6176617 5490729 6971797 6082899 6736541 Linear Bushing **Linear Slide Unit** 6099410 No. 7344310 7008107 5893646 C-Lube Linear Ball Spline MAG No. 7637662 McIntencince-tree Ⅱ -1

Explanation and Dimension Table for Respective Product Series

Rail Guide Type

Crossed Roller Way

Anti-Creep Cage
 Crossed Roller Way

 Anti-Creep Cage
 Crossed Roller Way H

 Crossed Roller Way

Explanation ... I -7 Dimension Table ... I -27

Anti-Creep Cage
 Crossed Roller Way Unit
 Crossed Roller Way Unit

Explanation ... II -55 Dimension Table ... II -61

Linear Slide Unit

- Precision Linear Slide Unit

 Explanation ...

 □ -83

 Dimension Table ...
 □ -89
- Linear Slide Unit
 Explanation ··· II -95 Dimension Table ··· II -99

Shaft Guide Type

Linear Ball Spline

C-Lube Linear Ball Spline MAG
 Linear Ball Spline G

Explanation ...

☐ -107 Dimension Table ...
☐ -123

Linear Bushing

■ Linear Bushing G
Explanation ... I -133
Dimension Table ... I -139

■ Linear Bushing
Explanation ··· I -141
Dimension Table ··· I -147

■ Miniature Linear Bushing
Explanation ··· II - 169 Dimension Table ··· II - 172

Stroke Rotary Bushing

Miniature Stroke Rotary Bushing Explanation ··· II -183 Dimension Table ··· II -187

■ Stroke Rotary Cage
Explanation ... I -189 Dimension Table ... I -192

Flat Guide Type

■ Roller Way

Explanation ··· II -195 Dimension Table ··· II 201

General Explanation

Crossed Roller Way

Anti-Creep Cage Crossed Roller Way
Anti-Creep Cage Crossed Roller Way H
Crossed Roller Way
Anti-Creep Cage Crossed Roller Way Unit
Crossed Roller Way Unit

A wide variety of series products including mechanism are available! Features of

IKO Crossed Roller Way is a linear motion rolling guide incorporating a roller cage between two ways whose two V-shaped surfaces are used as track groove. Arrangement of cylindrical rollers by orthogonalizing them alternately allows receiving of loads in any direction and executes extremely high-accuracy and smooth linear motion.

Crossed Roller Way

CRW-CRWM

Anti-Creep Cage Crossed Roller Way

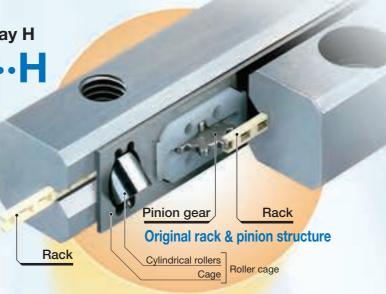
CRWG

Anti-Creep Cage Crossed Roller Way H

CRWG···H

CRWUG structure

IKO Anti-Creep Cage Crossed Roller Way CRWG is a product with a cage creep IKO proof function using a rack and pinion mechanism originated from the Crossed Roller Way CRW featuring smooth linear motion with super high accuracy.


CRWG ··· H is high load capacity type of CRWG, which has achieved greatly increased load rating by redesigning of raceway of CRWG.

Anti-Creep Cage Crossed Roller Way Unit

CRWUG

IKO Anti-Creep Cage Crossed Roller Way Unit CRWUG is a product with a cage creep proof function-provided Crossed Roller Way CRWG mounted into a ground-finished rigid table and bed.

Cage

Crossed Roller Way

Features of Built-in Rack & Pinion Type

Solves Cage Creep Issue!

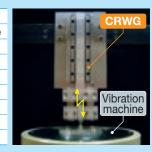
Perfect solution for cage creep issues by a built-in rack and pinion mechanism as an original design.

■ Freedom in Mounting

This series is reliable for applications such as vertical axis where Crossed Roller Way may have chances of cage creep.

■ High-Speed and High-Tact Operation

Any corrective operation for cage creep is not necessary even for high velocity operation.


Saving Energy

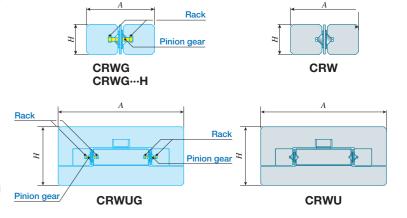
No remedy motion of cage is necessary even in long term operation.

No cage creep even under high-tact operation in vertical axis!

(Durability test) Test conditions

Model number	CRWG3					
Test method	Vibration te	Vibration test machine				
	Posture	Vertical				
Condition	Maximum velocity	827 mm/s				
	Acceleration	15 G				
	Number of cycle	31 Hz				
	Stroke length	8 mm				
	Mass of moving part	330 g				
Total cycles	100,000,0	00 cycles				
	Test method Condition	Test method Vibration terms Posture Posture Maximum velocity Acceleration Number of cycle Stroke length Mass of moving part				

(Result) No cage creep nor material damage in any component is found.


Interchangeable in Mounting Dimensions!

Adoption of original structure of arranging a rack inside the way keeps the same mounting dimensions as conventional Crossed Roller Way CRW.

* The mounting dimensions of CRWG1····
H and CRW1 are different.

■ Easy Replacement

Since they have the same external dimensions to those of the existing Crossed Roller Way and Crossed Roller Way Unit, existing Crossed Roller Way and Crossed Roller Way Unit can be replaced without any mounting dimensions modification.

Smooth and Extremely-High Accurate Operation!

Combination of precisely finished raceways and non-recirculating type linear motion rolling guide with super high precision rollers provides superbly smooth motion with very high accuracy.

■Improved Running Accuracy

Extremely high running accuracy can be achieved without run deflection by recirculating type linear motion rolling guide.

■ Suitable for Micro-Feeding

Improvement of precision positioning accuracy and superior corresponding feature to micro-feeding command can be expected because of the linear motion without stick-slip by extremely small frictional resistance.

1N=0.102kgf=0.2248lbs

Points

Superior load balance

This unit has a roller cage with cylindrical rollers alternately orthogonalized between two ways whose two V-shaped surfaces are used as track grooves, which enables loads to be received in any direction.

Solves cage creep problem

CRWG and CRWG···H units, which have originally-designed rack and pinion mechanism built-in, solve the cage creep issue and support high-speed & high-tact operation and vertical axis application.

■ High load capacity type CRWG···H

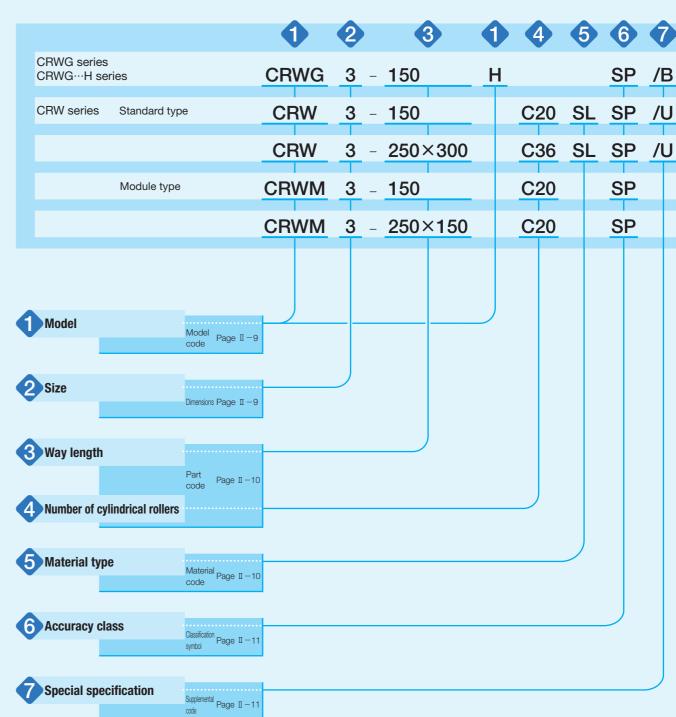
CRWG...H has achieved greatly increased load rating by redesigning of raceway of CRWG, thereby downsizing the machine and equipment and prolonging their lifetime.

Standard type and module type

There are two types in the CRW: one is standard type of using four ways and two roller cages in combination as a set and the other is module type of integrating two internal ways in a single structure.

Easy mounting

The mounting holes of the way are provided with boring and female thread, so that the mounting structure is not restricted. The module type with two internal ways integrated in a single structure is simple in mounting structure, thus producing high accuracy linear motion.


Stainless steels superior in corrosion resistance are listed on lineup.

Products made of stainless steel are highly resistance to corrosion, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

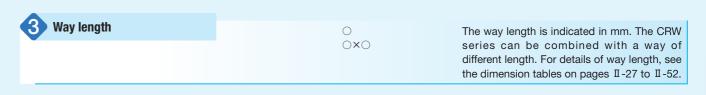
Identification Number and Specification

Example of an identification number

The specifications of CRWG series, CRWG···H series, and CRW series are indicated by the identification number. Indicate the identification number, consisting of a model code, a dimension, a part code, a material code, a classification symbol, and any supplemental codes for each specification to apply.

Note: One set of the CRW, CRWG, and CRWG...H series consists of a combination of four ways and two roller cages.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

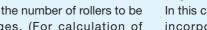

Identification Number and Specification — Model · Size—

A					
Model	Anti-Creep Cage Crossed Roller V (CRWG series)	Vay	: CRWG		
	Anti-Creep Cage Crossed Roller V (CRWGH series)	Vay H	: CRWG···H		
	Crossed Roller Way (CRW series)	Standard type Module type	: CRW : CRWM		
	For applicable models and sizes,	For applicable models and sizes, see Fig. 1.			
2 Size	1, 2, 3, 4, 6, 9, 12, 15, 18, 24	For applicable mod	els and sizes, see Table 1.		

Table 1 Models and Sizes of CRWG series, CRWG...H series, and CRW series

Series	Shape	Material	Nodel Size										
Series	эпаре	iviateriai	iviodei	1	2	3	4	6	9	12	15	18	24
CRWG		High carbon steel made	CRWG	ı	0	0	0	0	_	_	_	_	_
CRWGH		High carbon steel made	CRWGH	0	0	0	0	-	_	_	_	_	_
	Standard type	High carbon steel made	CRW	0	0	0	0	0	0	0	0	0	0
CRW		Stainless steel made	CRWSL	0	0	0	0	0	_	_	_	_	-
	Module type	High carbon steel made	CRWM	0	0	0	0	_	_	_	_	_	_

—Way length \cdot Number of Cylindrical Rollers \cdot Material Type –


Specifying the combination of different way lengths

Combination of standard type

This combination consists of two short ways, two long ways, and two roller cages, as a set.

In this case, make sure to specify the number of rollers to be incorporated in the roller cages. (For calculation of incorporated rollers, see the Selection of CRW Series on page II-17.)

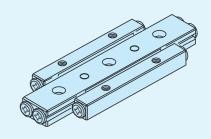
Example CRW 6 - $\underline{300} \times \underline{400}$ C24

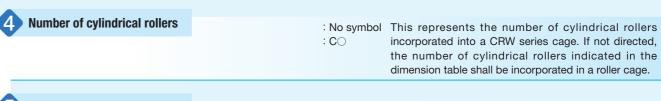
The number of cylindrical rollers

to be incorporated in a unit: 24

-Length of long way: 400 mm

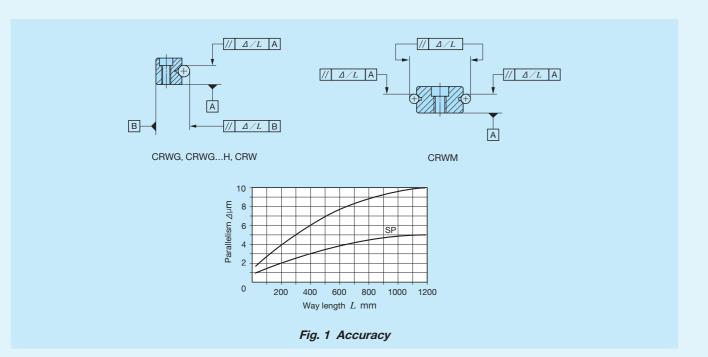
-Length of short way: 300 mm


In this case, make sure to specify the number of rollers to be incorporated in the roller cages. (For calculation of incorporated rollers, see the Selection of CRW Series on page II-17.)


This combination consists of one center way, two outside

Combination of module type

ways, and two roller cages, as a set.


Material type High carbon steel made : No symbol For applicable models and sizes, see Fig. 1. Stainless steel made : SL

> 1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Standard Super precision : SP

: No symbol For parallelism of the raceway to reference mounting surface and the tolerance of the parallelism of two

raceways of CRWM, see Fig. 1.

Special specification

B, M, SA, SB, U

For applicable special specifications, see Table 2.

For combination of multiple special specifications, see Table 3. For details of special specifications, see pages II-11 to II-14.

Table 2 Application of special specifications

Chaniel appointment	Supplemental	upplemental Size									
Special specification	code	1	2	3	4	6	9	12	15	18	24
Special mounting screw	/B	_	_	0	0	0	0	0	0	0	0
High rigidity roller cage (1)	/M	_	_	_	_	0	0	0	0	0	0
End stopper SA (1)	/SA	_	0	0	0	0	0	0	0	0	0
End stopper SB (1)	/SB	_	0	0	0	0	0	0	0	0	0
Wiper seal (1)	/U	_	0	0	0	0	0	0	0	0	0

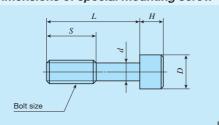
Notes (1) Applicable only to CRW series standard type. Not applicable to other series or shapes.

Table 3 Combination of special specifications

М	0			
SA	0	0		
SB	0	0	_	
U	0	0	_	_
	В	М	SA	SB

Remarks 1. The combination of "-" shown in the table is not available.

2. When using multiple types for combination, please indicate by arranging the symbols in alphabetical order.


Special Specification –

Special mounting screw /B

Preload adjusting-side way can be moved by adjusting the preload. Allowance for movement is required between a way fixing screw and mounting hole, but special mounting screws are provided for the cases where enough allowance is not provided or a fixing screw should be mounted from the way side as shown in Fig. 2.

This special mounting screw can also be used for the case where the mounting hole for mounting the fixed-side way and positioning accuracy of female thread are not enough. This special mounting screw is high carbon steel-made only.

Table 4 Dimensions of special mounting screw

					uni	t: mm
Size	Bolt size	d	D	Н	L	S
3	M 3	2.3	5	3	12	5
4	M 4	3.1	6	4	15	6
6	M 5	3.9	8	5	20	8
9	M 6	4.6	8.5	6	30	12
12	M 8	6.2	11.5	8	40	17
15	M10	7.9	14	10	45	16
18	M12	9.6	16	12	50	19
24	M14	11.2	19.5	14	70	26

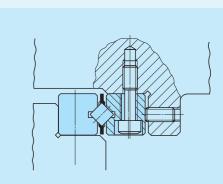
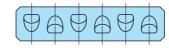



Fig. 2 Mounting by special mounting screw

High rigidity roller cage /M

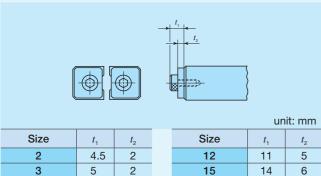
The cage is changed into a high rigidity copper alloy-made cage designed to suit vertical axis application. This cage has a structure to prevent a roller from dropping off in one-side direction.

For using a high rigidity roller cage for vertical axis application, it is recommended to use the cage in combination with end stopper SB.

End stopper SA /SA

When the stroke frequency is high and cage creep may be caused by the vibration and non-uniformly varying load, the end screw is changed into end stopper SA.

For the series of size 1, an end stopper SA according to end stopper SA is included as standard.


14

16

6

6

Table 5 Dimensions of end stopper SA

18

24

End stopper SB /SB

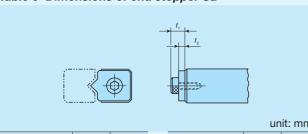
7

8

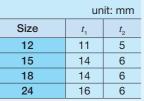
10

4

3


3

4


When using a high rigidity roller cage for vertical axis application, the end screw is changed into end stopper SB to regulate the cage stroke at the end.

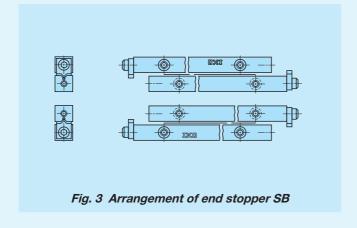
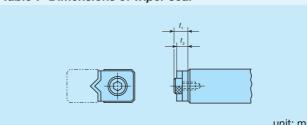

The end stopper SB cannot be mounted on all way ends. Standard mounting positions are shown in Fig. 3. The mounting positions can be changed by loosening the screw.

Table 6 Dimensions of end stopper SB

Size	t ₁	t_2
2	4.5	2
3	5	2
4	7	3
6	8	3
q	10	4


-Special Specification -

Wiper seal /U

In order to prevent foreign substances from entering into a raceway, the wiper seal is changed into the one with a function of end stopper SB.

The wiper seal cannot be mounted on all way ends. Standard mounting positions are shown in Fig. 4. The mounting positions can be changed by loosening the screw.

Table 7 Dimensions of wiper seal

Size	t ₁	t_2
2	4.5	4
3	5	4
4	7	6
6	8	6
9	10	7.5

	unit: mm				
Size	t_1	t_2			
12	11	8.5			
15	14	11			
18	14	11			
24	16	11			

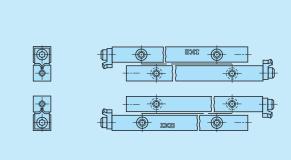


Fig. 4 Arrangement of wiper seal

Load Rating and Allowable Load

Basic dynamic load rating \mathcal{C} , basic static load rating \mathcal{C}_0 , and allowable load F of the CRWG series and CRWG···H series show values for downward loads in case of parallel arrangement of four ways and two pairs of roller cages as one set. (Refer to Fig. 5) In addition, the upward and lateral load rating is the same as downward load rating.

For the CRW series, since the number of cylindrical rollers that share load of each direction varies, the load rating for each load direction and allowable load must be obtained. In addition, basic dynamic load rating $C_{\rm u}$, basic static load rating $C_{\rm u}$, and allowable load $F_{\rm u}$ in the dimension table show values per cylindrical roller.

Basic dynamic load rating C, basic static load rating C_0 , and allowable load F of the CRW series are obtained based on the equation indicated in Table 8.1 and Table 8.2.

For more information on the definition of load rating and calculated load, see page \mathbb{I} -3.

Allowable load

Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small.

Therefore, use applied load within the allowable load range if very smooth rolling motion and high accuracy are required.

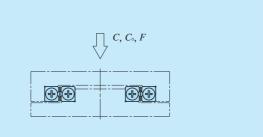


Fig. 5 Direction of load rating of the CRWG series and CRWG···H series

Table 8.1 Calculating formula of load rating and allowable load of standard type CRW series

	Upward and downward load (1)	Lateral load				
Load direction	Load	Load				
Basic dynamic load rating C N	$C_r = \left\{ \left(\frac{Z}{2} - 1\right) 2p \right\}^{1/36} \left(\frac{Z}{2}\right)^{3/4} C_U \cdots \cdots$	$C_{a} = \left\{ \left(\frac{Z}{2} - 1\right) 2p \right\}^{1/36} \left(\frac{Z}{2}\right)^{3/4} 2^{7/9} C_{U} $ (4)				
Basic static load rating C_0 N	$C_{\text{or}} = \left(\frac{Z}{2}\right)C_{\text{ou}} \qquad (2)$	$C_{\text{0a}} = 2\left(\frac{Z}{2}\right)C_{\text{0U}} \tag{5}$				
Allowable load F N	$F_{r} = \left(\frac{Z}{2}\right)F_{U} \qquad (3)$	$F_{a}=2\left(\frac{Z}{2}\right)F_{U}$ (6)				
	$C_{\rm r}$: Basic dynamic load rating in case upward and	downward load is applied N				
	C _a : Basic dynamic load rating in case lateral load in					
	C_{0r} : Basic static load rating in case upward and downward load is applied N					
	C_{0a} : Basic static load rating in case lateral load is a					
	F _r : Allowable load in case upward and downward load is applied N					
Code description	F _a : Allowable load in case lateral load is applied N					
	Z: The number of cylindrical rollers incorporated (omit the figures after the decimal fractions for	Ta roller cage $\frac{7}{2}$				
	p: Inter-pitch dimensions of cylindrical rollers mm	1				
	$C_{\scriptscriptstyle \mathrm{U}}$: Basic dynamic load rating per cylindrical roller	N				
	C_{ou} : Basic static load rating per cylindrical roller N					
	$F_{\scriptscriptstyle m U}$: Allowable load per cylindrical roller N					

Note (1): In case of parallel arrangement in this load direction, calculation must be performed based on the equations (7), (8), and (9) in Table 8.2.

Table 8.2 Calculating	formula of load rating and	l allowable load of	module type CRW series
-----------------------	----------------------------	---------------------	------------------------

	Upward and downward load	Lateral load
Load direction	1/2 of the load 1/2 of the load Load	Load
Basic dynamic load rating <i>C</i> N	$C_{r} = \left\{ \left(\frac{Z}{2} - 1 \right) 2p \right\}^{1/36} \left(\frac{Z}{2} \right)^{3/4} 2^{7/9} C_{U} $ (7)	$C_{a} = \left\{ \left(\frac{Z}{2} - 1 \right) 2p \right\}^{1/36} \left(\frac{Z}{2} \right)^{3/4} 2^{7/9} C_{U} $ (10)
Basic static load rating C_0 N	$C_{\text{or}} = 2\left(\frac{Z}{2}\right)C_{\text{ou}} $ (8)	$C_{\text{0a}} = 2\left(\frac{Z}{2}\right)C_{\text{0U}} \qquad (11)$
Allowable load F N	$F_{r}=2\left(\frac{Z}{2}\right)F_{U}$ (9)	$F_{a} = 2\left(\frac{Z}{2}\right)F_{U} \qquad (12)$
	$C_{\scriptscriptstyle m r}$: Basic dynamic load rating in case upward and	
	$C_{\rm a}$: Basic dynamic load rating in case lateral load	
	$C_{ m Or}$: Basic static load rating in case upward and do	
	C_{0a} : Basic static load rating in case lateral load is a	
	F _r : Allowable load in case upward and downward	
Code description	F _a : Allowable load in case lateral load is applied N	
	The number of cylindrical rollers incorporated (omit the figures after the decimal fractions for	in a roller cage $\frac{Z}{2}$)
	p: Inter-pitch dimensions of cylindrical rollers mm	1
	$C_{\scriptscriptstyle \mathrm{U}}$: Basic dynamic load rating per cylindrical roller	N
	C_{ou} : Basic static load rating per cylindrical roller N	
	F _U : Allowable load per cylindrical roller N	

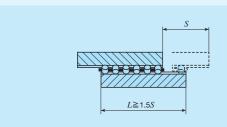
Selection of CRW Series

For selection of CRW series specifications, stroke length and the number of cylindrical rollers, as well as accuracy, load rating and allowable load, must be determined.

Stroke length and the number of cylindrical rollers

Stroke length of the CRW series affects the way length and the number of cylindrical rollers.

Therefore, select specifications by following the procedure below taking into account the stroke length used and applied load.


Calculation of way length

The way length, which should be 1.5 times longer than the stroke length used, is obtained from the equation below.

L≥1.5*S* ······(13)

Where L: Way length mm

S: Stroke length used mm

2 Calculation of maximum stroke length

Ideally the stroke length used should be less than 80% of the maximum stroke length, which is obtained from the equation below.

$$S_1 \ge \frac{1}{0.8} S \cdots (14)$$

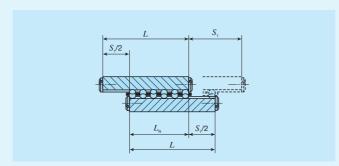
Where S_1 : Maximum stroke length mm

S: Stroke length used mm

3 Calculation of cage length and the number of rollers

With the way length and maximum stroke length determined, the allowable length for cage can be calculated.

Calculation method of the cage length varies depending on specifications of end screws and end stopper fitted to the way end.


(1) With standard end screws and end stopper SA (excluding Size 1 series)
The dimensions between rollers at both ends is obtained from
the following equation by using a value obtained by subtracting
a half of the maximum stroke length from the way length.

$$L_{\rm R} = L - \frac{S_1}{2}$$
 (15)

Where $L_{\mbox{\tiny R}}$: Allowable dimensions between rollers at both ends mm

L: Way length mm

 S_1 : Maximum stroke length mm

The number of rollers to be incorporated in a roller cage is obtained by the following equation.

$$Z = \frac{L_{\rm R} - D_{\rm W}}{p} + 1$$
(16)

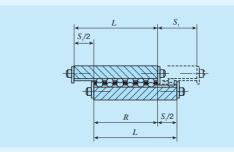
Where *Z*: Number of cylindrical rollers (figures after the decimal fractions are omitted)

 L_{R} : Allowed dimensions between rollers at both ends mm

 $D_{\rm w}$: Diameter of cylindrical rollers (refer to the dimension table) mm

p: Inter-pitch dimensions of cylindrical rollers (refer to the dimension table) mm

(2) For Size 1 series


The stroke length is regulated by cage and end stopper and the cage length is obtained by the following equation.

$$R=L-\frac{S_1}{2}$$
 (17)

Where R: Allowable cage length mm

L: Way length mm

 S_1 : Maximum stroke length mm

The number of rollers to be incorporated in a roller cage is obtained by the following equation.

$$Z = \frac{R - 2e}{p} + 1$$
(18)

Where Z: Number of cylindrical rollers (figures after the decimal fractions are omitted)

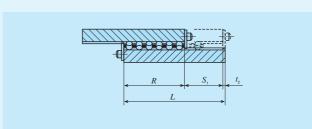
R: Allowable cage length mm

e: End dimension of cage (refer to the dimension table) mm

p: Inter-pitch dimensions of cylindrical rollers (refer to the dimension table) mm

(3) For end stopper SB and wiper seal

The stroke length is regulated by cage and end stopper or wiper seal and the cage length is obtained by the following equation.


$$R=L-t_2-S_1$$
(19)

Where R: Allowable cage length $\,$ mm

L: Way length mm

 S_1 : Maximum stroke length mm

 t_2 : Thickness of end stopper SB or wiper seal mm (See Table 6 in page II-13, and Table 7 in page II-14)

The number of rollers to be incorporated in a roller cage is obtained by the equation (18) as with the Size 1 series.

Calculation examples

Form of use	 CRV	V 6
Applied load	 P =	7000 N
Stroke length	 S =	195 mm

Select specifications for parallel use of Crossed Roller Way under the above conditions (refer to Fig. 26 in page II -23).

Calculation of way length

The way length L is calculated from the equation (13).

$$L \ge 1.5S = 1.5 \times 195 = 292.5$$

Therefore, select L = 300 mm based on the standard length in the dimension table.

2 Calculation of maximum stroke length

The maximum stroke length S_1 is calculated from the equation (14) .

$$S_1 \ge \frac{1}{0.8} S = \frac{1}{0.8} \times 195 = 244$$

Allowable dimensions between rollers at both ends $L_{\rm R}$ is calculated from the equation (15).

$$L_{\rm R} = L - \frac{S_1}{2} = 300 - \frac{244}{2} = 178$$

3 Calculation of the number of rollers

The number of cylindrical rollers Z is calculated from the equation (16). However, $D_{\rm w}$ and p in this form are $D_{\rm w}=6$ mm, p=9 mm according to the dimension table.

$$Z = \frac{L_R - D_W}{p} + 1 = \frac{178 - 6}{9} + 1 = 20.1$$

Therefore, it should be Z = 20 by omitting figures after the decimal fractions.

4 Calculation of allowable load

Allowable load in parallel arrangement F is calculated from equation (9) described in Table 8.2 in page II-16. However, allowable load per cylindrical roller $F_{\rm U}$ is $F_{\rm U}$ = 769 N according to the dimension table.

$$F=2\left(\frac{Z}{2}\right)F_{\text{U}}=2\left(\frac{20}{2}\right)\times769=15380$$

Therefore, allowable load F is larger than applied load P = 7000 N. When allowable load becomes smaller than applied load, it is necessary to increase the number of cylindrical rollers by extending way length, or increase the cylindrical roller diameter.

Determination of specifications

Specifications obtained in accordance with the above is CRW6-300 and the number of cylindrical rollers is 20.

Lubrication

Grease is not pre-packed in the CRWG series, CRWG···H series and CRW series, so please perform adequate lubrication as needed.

Both of oil lubrication and grease lubrication are available in the CRWG series, CRWG···H series and CRW series. Generally, oil lubrication should be selected for high speed or low frictional resistance, and grease lubrication for low speed. For grease lubrication, use of high-quality lithium-soap base grease is recommended. For light load and low speed, apply grease or oil to raceway, rack and pinion gear first and then reapply accordingly. However, the structure as indicated in the Fig. 6 allows for easy reapplication. In addition, since the clearance between ways is small for CRWG···H series, apply grease or oil directly to raceway for re-greasing.

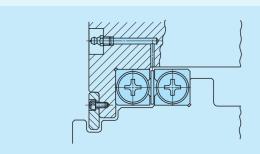


Fig. 6 Example of lubrication system

Dust Protection

Since the CRWG series, CRWG···H series and CRW series are finished with high accuracy, harmful foreign substances such as dust and particles entering into the bearing will cause low life or impaired accuracy. To prevent harmful foreign substances such as dust, particles and water from outside from entering, it is recommended to attach non-contact type labyrinth seal as indicated in Fig. 7, or contact type wiper seal as indicated in the Fig. 8 to both sides.

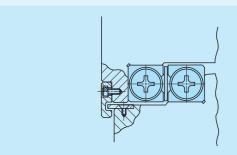
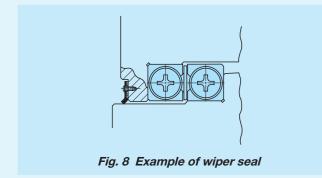



Fig. 7 Example of labyrinth seal

Precaution for Use —

Handling

As the CRWG series, CRWG···H series and CRW series are designed highly precisely, take extra care for handling.

A pinion gear and cylindrical roller are incorporated with the cage for the CRWG series and CRWG···H series. When the cage is dropped or handled roughly, the pinion gear and cylindrical roller may come off. Especially for CRWG···H, grabbing the cylindrical roller may take it off, so be sure to hold the cage body for handling. In addition, do not cut off the cage as doing so may cause pinion gear coming off and breakage of gear joint section.

A rack is incorporated with the way for the CRWG series and CRWG···H series. In operation, take note that the rack may come off when the end screw is removed.

Though the cage for the CRW series may cut off to necessary length, handle it with care not to deform it when cutting.

2 Accuracy of mounting part

Examples of typical mounting surface processing are shown in Fig. 9.1 and Fig. 9.2.

General processing accuracy of mounting surface is according to Table 9. However, care should be exercised as mounting surface accuracy directly affects running accuracy. Especially when high running accuracy is required, the processing accuracy higher than that indicated in Table 9 is required.

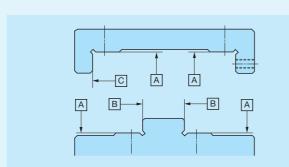
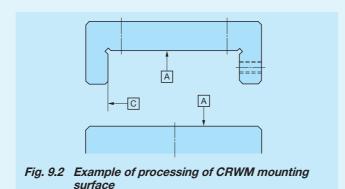



Fig. 9.1 Example of processing of CRWG, CRWG···H and CRW mounting surface

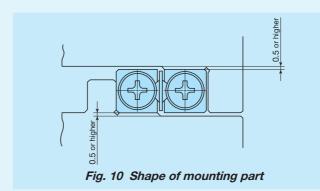
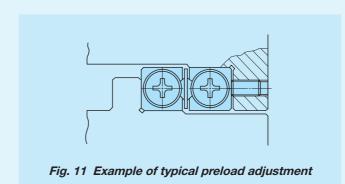


Table 9 Accuracy of mounting part

Accuracy of A surface	 Directly affects running accuracy. For the flatness of two mounting surfaces on table and bed sides, allowable value approximate to the parallelism indicated in Fig. 1 in page II-11 is recommended.
Accuracy of B and C surfaces	Flatness Affects preload (refer to Preload adjustment mechanism). Allowable value approximate to the parallelism indicated in Fig. 1 in page II-11 is recommended. Squareness Affects rigidity in preload direction of the mounting part of the CRWG series CRWG···H series and CRW series. Process to sufficiently high accuracy.
	, , ,

3 Shape of mounting part


For the opposite corner of the mating reference mounting, it is recommended to have relieved fillet as indicated in Fig. 10. In addition, a clearance of 0.5 mm or higher should be made between the way and the mating member material.

4 Preload adjustment mechanism

For use with preload, use the preload adjusting screw as indicated in Fig. 11 as a general way. Preload adjusting screw nominal dimensions and mounting position should be in accordance with the way fixing bolt dimensions and position. Press the center of the way H dimensions.

Preload amount varies depending on operational conditions of your machine and device. However, as excessive preload may lead to short life and damage on the raceway, it is typically ideal to adjust to zero clearance or slight preload state. When accuracy and rigidity are required, use a push plate or tapered jib as indicated in Fig. 12 and Fig. 13, respectively.

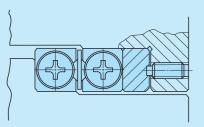


Fig. 12 Example of push plate

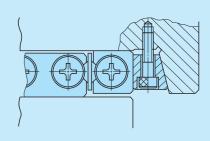


Fig. 13 Example of tapered jib

6 Operating temperature

As synthetic resin components are used for the CRWG series and CRWG···H series, the maximum operating temperature is 120°C, while it should be lower than 100°C for continuous use. When it exceeds 100°C, contact IKO. As synthetic resin components are not used for the CRW series, it may be used at high temperature. However, when it exceeds 100°C, contact IKO.

6 Maximum velocity

Operating velocity should be lower than 50 m/min for the CRWG series and CRWG···H series, and lower than 30 m/min for the CRW series.

1 Tightening torque for fixing screw

Typical tightening torque for mounting of the CRWG series, CRWG···H series and CRW series is indicated in Table 10. When vibration and shock are large or moment load is applied, it is recommended to fix by using the torque 1.3 times larger than that indicated in the table. In addition, when high running accuracy is required with no vibration and shock, it may be fixed by using torque smaller than that indicated in the table, however, it is recommended to use adhesive agent to fasten the screw, or to use stop bolts.

Table 10 Tightening torque for fixing screw

Table To Tigit	terning torque it	or fixing screw
Bolt size	Tightening t	orque N · m
DOIL SIZE	High carbon steel-made screw	Stainless steel-made screw
M 1.6×0.35	0.20	_
M 2 ×0.4	0.40	0.31
M 3 ×0.5	1.4	1.1
M 4 ×0.7	3.2	2.5
M 5 ×0.8	6.4	5.0
M 6 ×1	10.9	8.5
M 8 ×1.25	26.1	_
M10 ×1.5	51.1	_
M12 ×1.75	88.2	_
M14 ×2	140	_
M16 ×2	215	_

1N=0.102kgf=0.2248lbs.

Ⅱ -19

Remark:

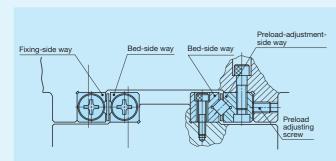
When fixing screws

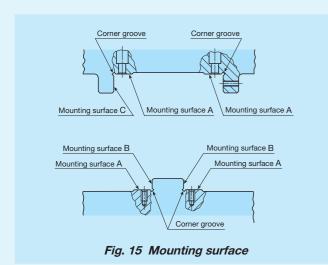
used on the table side and bed side are not identical, fasten them all to the smaller tightening torque.

Mounting

Mounting of standard type CRW series, CRWG series, and CRWG...H series

Typical mounting structure is shown in Fig. 14. For mounting at this point, generally follow the procedure below.




Fig. 14 Mounting example of standard type CRW series, CRWG, and CRWG···H

Preparation for mounting

- · Products are packed by set (4 ways and 2 pairs of roller cages). Be careful not to mix with other sets.
- Clean each part with clean wash fluid and then apply rust prevention and lubrication oil. To clean further, remove the end screw first.

2 Cleanup of mounting surface

- · Remove burrs and blemishes on the machine mounting surface with an oil-stone, etc. Be careful about corner groove on the mounting surface, too.
- · Wipe off dust and dirt with clean cloth and apply rust prevention and lubrication oil lightly.

Mounting of bed-side way

- Properly align the way with mounting surface and temporarily tighten fixing screws evenly to the tightening torque.
- While making the way sticking to B surface (refer to Fig. 15)
 tight, fully tighten the screws to the specified torque.
- · When high running accuracy is required, fully and evenly tighten them to the specified torque while checking the parallelism of the raceway along the full length of the way.
- \cdot Typical tightening torque for fixing screw is according to Table 10 in page $\, \mathbb{I}$ -20.

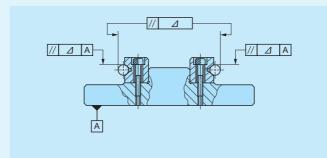
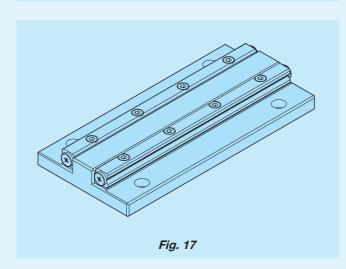
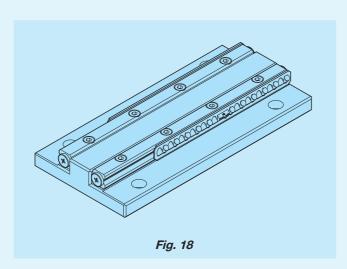
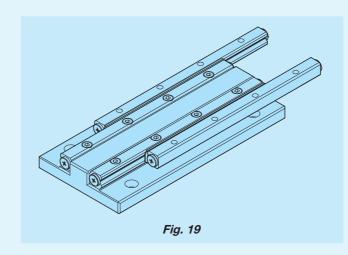
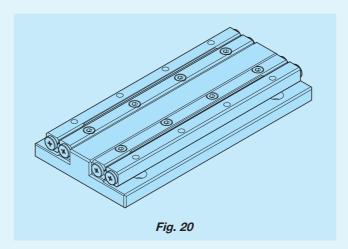
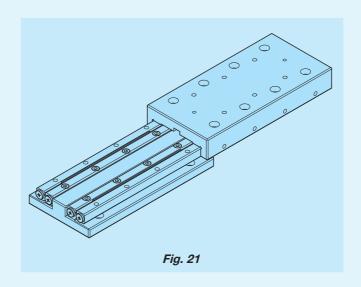




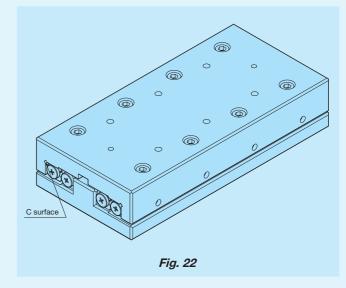
Fig. 16 Accuracy of way mounting



Operation of table and bed


- Position the roller cages at the stroke end positions of the bed-side way. (Refer to Fig. 18)
- · For CRWG and CRWG···H series, mate the pinion gear at the center of the cage and the rack of the way.
- · At this point, be careful not to deform the cage.


- · Position the table-side way in the stroke end position. (Refer to Fig. 19)
- · For CRWG and CRWG···H series, mate the pinion gear at the center of the cage and the rack of the table-side way.


· Position the table-side way approximately in the stroke center position. (Refer to Fig. 20)


 Position the table while holding the way to prevent it from moving. (Refer to Fig. 21)

- · Temporarily tighten the table fixing screws. (Refer to Fig. 22)
- · While tightly pressing the fixing-side way to C surface (refer to Fig. 15), fully tighten the screws to the specified torque.

· Fully stroke the table softly and check that it is within the stroke range used and cylindrical rollers on both ends of the cage do not contact with end screws of the way. If they make contact, take the procedure again. (Refer to Fig. 23)

Preload adjustment

- · Preload adjustment is performed with fixing screws of the table-side way tightened temporarily.
- Preload adjustment is started from the preload adjusting screw at the center of way length and then both ends in turn.
- While measuring the clearance on the table sides, tighten the preload adjusting screws subsequently until deflection of the dial gauge stops. Measure the tightening torque for preload adjusting screws at this point.
- When adjusting preload adjusting screw near either end, stroke the table softly and check that the cylindrical roller is on the preload adjusting screw section.
- · After the above procedure, the clearance becomes zero or in slight preload state, but preload is still not adjusted evenly. With the same procedure again, re-adjust all the preload adjusting screws evenly to the torque previously measured.

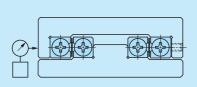


Fig. 24 Example of preload adjustment method

• Full tightening of preload-adjustment-side way

- Fixing screws are lightly tightened to even torque. As with preload adjusting screws, temporarily fix them to torque similar to the specified torque in turn from the way center to both ends.
- When tightening fixing screws near either end, stroke the table softly and check that the cylindrical roller is on fixing screw section.
- Finally with the same procedure, fully tighten all the fixing screws evenly to the specified torque.

Ocheck after assembly

- · Fully stroke the table softly and check that running is smooth without abnormal noise.
- Measure the table upper and side surfaces with dial gauge or the like and check the running accuracy.

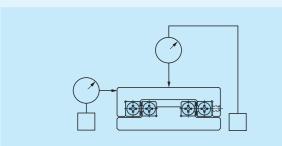
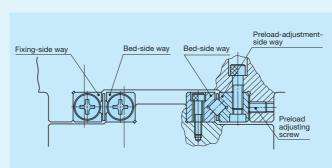
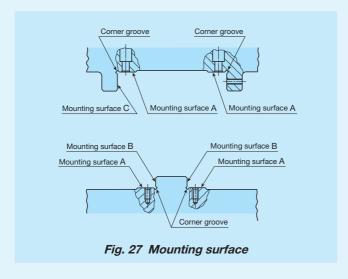


Fig. 25 Accuracy check after assembly

High-accuracy mounting of standard type CRW series

Typical mounting structure is shown in Fig. 26. For mounting at this point, generally follow the procedure below.




Fig. 26 Mounting example of standard type CRW series

Preparation for mounting

- Products are packed by set (4 ways and 2 pairs of roller cages). Be careful not to mix with other sets.
- Clean each part with clean wash fluid and then apply rust prevention and lubrication oil. To clean further, remove the end screw first.

2 Cleanup of mounting surface

- Remove burrs and blemishes on the machine mounting surface with an oil-stone, etc. Be careful about corner groove on the mounting surface, too.
- · Wipe off dust and dirt with clean cloth and apply rust prevention and lubrication oil lightly.

Mounting of bed-side way

- Properly align the way with mounting surface and temporarily tighten fixing screws evenly to the tightening torque.
- While making the way sticking to B surface (refer to Fig. 27) tight, fully tighten the screws to the specified torque.
- When high running accuracy is required, fully and evenly tighten them to the specified torque while checking the parallelism of the raceway along the full length of the way.
- \cdot Typical tightening torque for fixing screw is according to Table 10 in page ${\rm I\!I}$ -20.

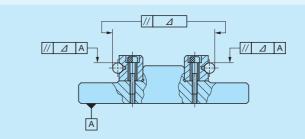


Fig. 28 Accuracy of way mounting

Mounting of table-side way

- Properly align the fixing-side way with mounting surface and temporarily tighten fixing screws evenly to the tightening torque.
- · While making the fixing-side way sticking to C surface tight, fully tighten the screws to the specified torque.
- Set back the preload adjusting screws in advance, make the preload-adjusting-side way sticking to the mounting surface, and then temporarily tighten fixing screws lightly to the even torque.

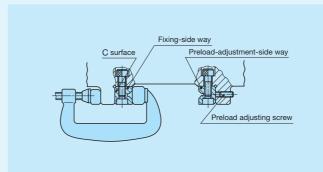


Fig. 29 Mounting of table-side way

5 Operation of table and bed

- · Make alignment of the position in height and cross direction so that the roller cage can be inserted between the table-side way and bed-side way.
- Carefully insert the roller cage and assembly it at approximate center of the way length. At this point, be careful not to deform the cage.
- · Mount end screws and end stopper of each way.
- Push the entire table against the preload adjusting screws and tighten the preload adjusting screws to make temporary adjustment until the clearance between ways becomes zero.
- Fully stroke the table softly and correct the roller cage position to the center.

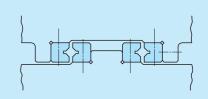


Fig. 30 Position alignment before operation

6 Preload adjustment

- Preload adjustment is performed with fixing screws of the preload-adjusting-side way tightened temporarily.
- · Preload adjustment is started from the preload adjusting screw at the center of way length and then both ends in
- While measuring the clearance on the table sides, tighten the preload adjusting screws subsequently until deflection of the dial gauge stops. Measure the tightening torque for preload adjusting screws at this point.
- When adjusting preload adjusting screw near either end, stroke the table softly and check that the cylindrical roller is on the preload adjusting screw section.
- After the above procedure, the clearance becomes zero or in slight preload state, but preload is still not adjusted evenly. With the same procedure again, re-adjust all the preload adjusting screws evenly to the torque previously measured.

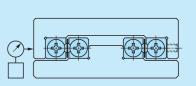


Fig. 31 Example of preload adjustment method

1N=0.102kgf=0.2248lbs

• Full tightening of preload-adjustment-side way

- Fixing screws are lightly tightened to even torque. As with preload adjusting screws, temporarily fix them to torque similar to the specified torque in turn from the way center to both ends.
- When tightening fixing screws near either end, stroke the table softly and check that the cylindrical roller is on fixing screw section.
- Finally with the same procedure, fully tighten all the fixing screws evenly to the specified torque.

Check after assembly

- Fully stroke the table softly and check that running is smooth without abnormal noise.
- Measure the table upper and side surfaces with dial gauge or the like and check the running accuracy.

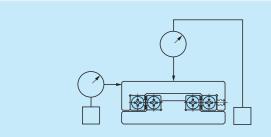


Fig. 32 Accuracy check after assembly

Mounting of module type CRW series

Typical mounting structure of CRWM is shown in Fig. 33. For mounting at this point, generally follow the procedure below

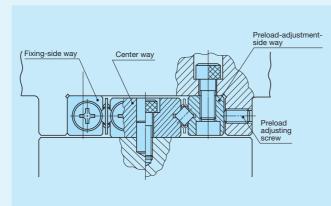
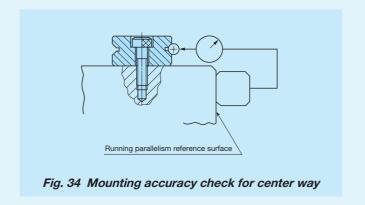


Fig. 33 Example of mounting of CRWM

1 Preparation for mounting


- Crossed Roller Way CRWM is packed by set (1 center way, 2 ways and 2 pairs of roller cages). Be careful not to mix with other sets.
- Remove end screws and end stopper, clean up each part with clean wash fluid and then apply rust prevention and lubrication oil.

2 Cleanup of mounting surface

- · Remove burrs and blemishes on the machine mounting surface with an oil-stone, etc. Be careful about corner groove on the mounting surface, too.
- Rust prevention and lubrication oil should be applied after cleaning each part with clean wash fluid. Remove end screws and end stopper if additional cleaning is necessary.

Mounting of center way

- · Roughly align the center way to the mounting surface and lightly fix it with fixing screws.
- · While measuring mounting parallelism of the center way and raceway to the reference surface of running parallelism for position correction, temporarily tighten the fixing screws to the even tightening torque.
- Evenly tighten all the fixing screws to the specified tightening torque.

4 Processing of dowel pin hole

- When dowel pins are used, machine holes on the bed in alignment with dowel pin holes near either end of the center way.
- Dowel pin hole of the center way is finished for H7. Finish bed holes in the same way.
- · Diameter and its allowance of dowel pin hole of the center way vary depending on the dimension table.
- Eliminate cutting chips and clean up again as necessary.
 When machines for mounting of the center way are large, clean them up with the center way removed and then reassemble.
- · Load the dowel pins and check the parallelism of the reference surface of the running parallelism and the raceway of the center way again.

Fig. 35 Machining of dowel pin hole

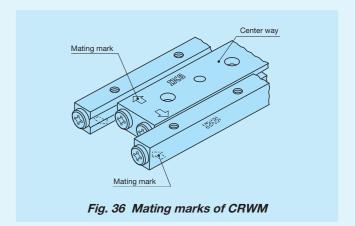
6 Operation of table and bed

· Complies with mounting of standard type CRW series, CRWG series, and CRWG···H series.

6 Preload adjustment

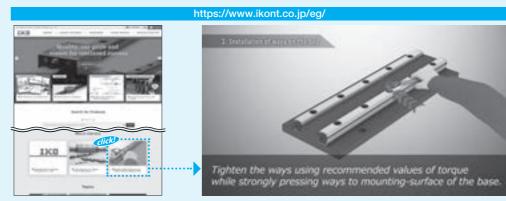
· Complies with mounting of standard type CRW series, CRWG series, and CRWG···H series.

• Full tightening of preload-adjustment-side way

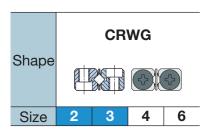

· Complies with mounting of standard type CRW series, CRWG series, and CRWG···H series.

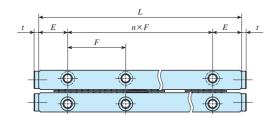
8 Check after assembly

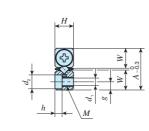
· Complies with mounting of standard type CRW series, CRWG series, and CRWG···H series.

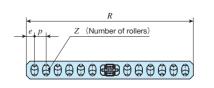

Mating marks module type CRW series

CRWM has mating marks to ensure the best running accuracy after mounting based on the parallelism measurement result of reference mounting surface and raceway. When assembling the ways, align the mating marks of ways with the same end side as indicated in Fig. 36.

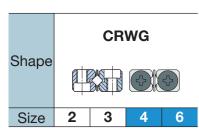


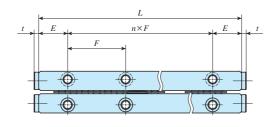

Instructional Mounting Videos

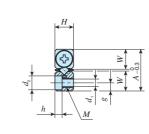

Instructional videos explaining the mounting methods for the Crossed Roller Way series are available on the IKO website. Please refer to them during the mounting process if needed.

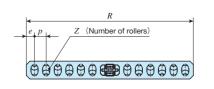


IKU Anti-Creep Cage Crossed Roller Way

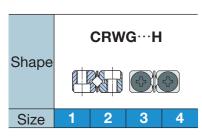

	Mass	s (Ref.)								Nomin	al dime	nsions	mm							Maximum stroke length	Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)		Bour	dary dimensions	ı	Dimens	ion of roller cage	1	ı				1	Mount	ing dime	ensions	ı		J. 1	$C^{(3)}$	$C_0^{(3)}$	F(3)
	g	g	A	Н	$L(n \times F)$	E	D_{W}	R		Z	p	e	W	g	M	d_1	d_2	h	t	mm	N	N	N
CRWG 2- 30	6.53	0.38			30(1×15)			25.6		4										9	913	1 180	392
CRWG 2- 45	9.53	0.72			45(2×15)]		41.6		8										7	1 570	2 350	783
CRWG 2- 60	12.5	0.88			60(3×15)	1		49.6		10										21	1 860	2 940	979
CRWG 2- 75	15.5	1.22			75(4×15)]		65.6		14										19	2 420	4 110	1 370
CRWG 2- 90	18.5	1.39	12	6	90(5×15)	7.5	2	73.6		16	4	2.8	5.5	2.5	МЗ	2.55	4.4	2	1.5	33	2 680	4 700	1 570
CRWG 2-105	21.5	1.72			105(6×15)]		89.6		20										31	3 190	5 880	1 960
CRWG 2-120	24.5	1.89			120(7×15)]		97.6		22										45	3 440	6 460	2 150
CRWG 2-135	27.5	2.22			135(8×15)			113.6		26										43	3 910	7 640	2 550
CRWG 2-150	30.5	2.39			150(9×15)			121.6		28										57	4 150	8 230	2 740
CRWG 3- 50	22.8	1.69			50(1×25)			42		6										13	2 740	3 660	1 220
CRWG 3- 75	33.3	2.71			75(2×25)			62		10										23	4 080	6 090	2 030
CRWG 3-100	43.8	3.72			100(3×25)			82		14										33	5 300	8 530	2 840
CRWG 3-125	54.4	4.74			125(4×25)			102		18										43	6 440	11 000	3 660
CRWG 3-150	64.9	5.75	18	8	150(5×25)	12.5	3	122		22	5	3.5	8.3	3.5	M4	3.3	6	3.1	2	53	7 530	13 400	4 470
CRWG 3-175	75.4	6.77			175(6×25)			142		26										63	8 570	15 800	5 280
CRWG 3-200	85.9	7.78			200(7×25)			162		30										73	9 580	18 300	6 090
CRWG 3-225	96.4	8.80			225(8×25)			182		34										83	10 600	20 700	6 910
CRWG 3-250	107	9.81			250(9×25)			202		38										93	11 500	23 200	7 720

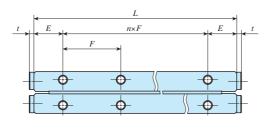

Notes (1) The value shows the mass of a piece of way.


⁽²⁾ The value shows the mass of a roller cage.

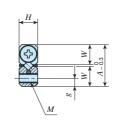

⁽³⁾ This is the value when a combination of four ways and two roller cages is used in parallel arrangement.

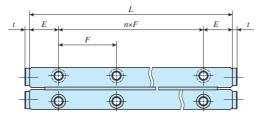
IKU Anti-Creep Cage Crossed Roller Way

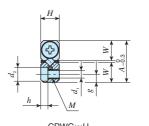

	Mas	s (Ref.)							Nom	inal dim	ensions	mm							Maximum stroke length	Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)		Bour	ndary dimensions		Dimens	sion of roller cage			1			Mount	ing dime	ensions		ı		$C^{(3)}$	$C_0^{(3)}$	F(3)
	g	g	A	Н	$L(n \times F)$	E	D_{W}	R	Z	p	e	W	g	M	d_1	d_2	h	t	mm	N	N	N
CRWG 4- 80	59.6	9.70			80(1×40)			73	8										14	6 690	9 400	3 130
CRWG 4-120	88.0	12.0			120(2×40)	1		101	12										38	9 180	14 100	4 700
CRWG 4-160	116	14.3			160(3×40)			129	16										62	11 500	18 800	6 270
CRWG 4-200	145	16.7	22	11	200(4×40)	20	4	157	20	7	5	10	4.5	M5	4.3	7.5	4.1	2	86	13 700	23 500	7 830
CRWG 4-240	173	20.1			240(5×40)			199	26										82	16 700	30 600	10 200
CRWG 4-280	201	22.5			280(6×40)			227	30										106	18 700	35 300	11 800
CRWG 4-320	230	24.8			320(7×40)]		255	34										130	20 600	40 000	13 300
CRWG 6-100	147	12.0			100(1×50)			75	6										48	11 200	13 800	4 610
CRWG 6-150	216	22.6			150(2×50)			129	12										40	19 300	27 700	9 230
CRWG 6-200	285	29.7	21	15	200(3×50)	25	6	165	16		6	14	6	MG	F 2	0.5	F 0	2	68	24 100	36 900	12 300
CRWG 6-250	353	36.8	31	15	250(4×50)	25	6	201	20	1 3	6	14	Ь	M6	5.3	9.5	5.2	3	96	28 700	46 100	15 400
CRWG 6-300	422	43.9			300(5×50)			237	24										124	33 000	55 400	18 500
CRWG 6-350	491	51.0			350(6×50)			273	28										150	37 200	64 600	21 500

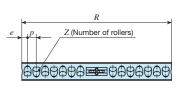

Notes (1) The value shows the mass of a piece of way.

⁽²⁾ The value shows the mass of a roller cage.

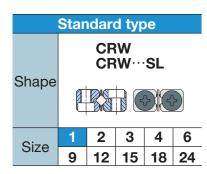

⁽³⁾ This is the value when a combination of four ways and two roller cages is used in parallel arrangement.

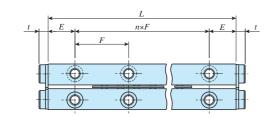

IKU Anti-Creep Cage Crossed Roller Way H

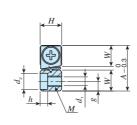


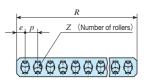


CRWG 1···H

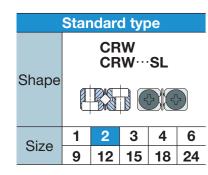


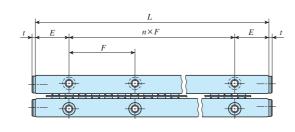

	Ma	ss (Ref.)							Nomin	nal dime	ensions	mm							Maximum stroke length	Basic dynamic load rating	Basic static	Allowable load
Identification number	Way (1)	Roller cage (2)		Bour	ndary dimensions		Dimensi	on of roller cage						Mount	ing dime	ensions			otroite length	$C^{(3)}$	$C_0^{(3)}$	F(3)
	g	g	A	Н	$L(n \times F)$	E	D_{W}	R	Z	p	e	W	g	M	d_1	d_2	h	t	mm	N	N	N
CRWG 1- 20H	2.05	0.16			20(1×10)			16.5	6										3	525	717	239
CRWG 1- 30H	3.07	0.25	1		30(2×10)			24.5	10										7	782	1 200	398
CRWG 1- 40H	4.10	0.30	1		40(3×10)			28.5	12		4.05								19	901	1 430	478
CRWG 1- 50H	5.13	0.39	8.5	4	50(4×10)	5	1.5	36.5	16	2	1.25	3.9	1.7	M1.6	_	_	_	0.7	23	1 130	1 910	638
CRWG 1- 60H	6.15	0.44	1		60(5×10)	1		40.5	18	1									35	1 230	2 150	717
CRWG 1- 70H	7.18	0.53	1		70(6×10)	1		48.5	22	1									39	1 440	2 630	877
CRWG 1- 80H	8.21	0.67	1		80(7×10)	1		61.5	28]	1.75								35	1 740	3 350	1 120
CRWG 2- 30H	6.53	0.40			30(1×15)			21.7	6										12	1 090	1 500	500
CRWG 2- 45H	9.53	0.73			45(2×15)			36.7	12										12	1 860	3 000	1 000
CRWG 2- 60H	12.5	0.95	1		60(3×15)	1		46.7	16										22	2 330	4 000	1 330
CRWG 2- 75H	15.5	1.27	1		105(6×15) 120(7×15)		61.7	22	1									22	2 980	5 500	1 830	
CRWG 2- 90H	18.5	1.38	12	6		2	66.7	24	2.5	1.6	5.5	2.5	МЗ	2.55	4.4	2	1.5	42	3 190	6 000	2 000	
CRWG 2-105H	21.5	1.71	1					81.7	30										42	3 790	7 500	2 500
CRWG 2-120H	24.5	1.93	1					91.7	34										52	4 180	8 500	2 830
CRWG 2-135H	27.5	2.26	1		135(8×15)	1		106.7	40										52	4 740	10 000	3 330
CRWG 2-150H	30.5	2.48	1		150(9×15)	1		117.5	44	1	2								62	5 100	11 000	3 670
CRWG 3- 50H	22.8	1.58			50(1×25)			41.8	8										9	4 260	6 490	2 160
CRWG 3- 75H	33.7	2.28	1		75(2×25)			57	12										29	5 840	9 730	3 240
CRWG 3-100H	44.7	3.33	1		100(3×25)			79.8	18										33	8 000	14 600	4 870
CRWG 3-125H	55.7	4.02	1		125(4×25)			95	22										53	9 350	17 800	5 950
CRWG 3-150H	66.7	5.07	18	8	150(5×25)	12.5	3	117.8	28	3.8	2.5	8.6	3.5	M4	3.3	6	3.1	2	57	11 300	22 700	7 570
CRWG 3-175H	77.6	5.69	1		175(6×25)	1		133	32	1									77	12 500	26 000	8 650
CRWG 3-200H	88.6	6.81	1		200(7×25)	1		155.8	38	1									81	14 300	30 800	10 300
CRWG 3-225H	99.6	7.85	1		225(8×25)	1		178.6	44	1									86	16 000	35 700	11 900
CRWG 3-250H	111	8.55	1		250(9×25)	1		193.8	48	1									105	17 100	38 900	13 000
CRWG 4- 80H	61.4	4.35			80(1×40)			59.4	10										33	10 500	17 100	5 690
CRWG 4-120H	92.7	6.80			120(2×40)			88.2	16										55	15 200	27 300	9 100
CRWG 4-160H	124	9.25	1		160(3×40)	1		117	22	1									78	19 500	37 500	12 500
CRWG 4-200H	155	11.7	22	11	200(4×40)	20	4	145.8	28	4.8	3	10.6	4.5	M5	4.3	7.5	4.1	2	100	23 500	47 800	15 900
CRWG 4-240H	186	15.0			240(5×40)			184.2	36										103	28 600	61 400	20 500
CRWG 4-280H	218	17.4			280(6×40)			213	42										126	32 200	71 700	23 900
CRWG 4-320H	249	19.9			320(7×40)			241.8	48										148	35 700	81 900	27 300

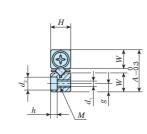

Notes (1) The value shows the mass of a piece of way.


⁽²⁾ The value shows the mass of a roller cage.

⁽³⁾ This is the value when a combination of four ways and two roller cages is used in parallel arrangement.

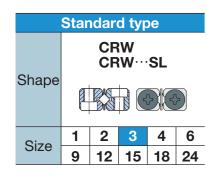


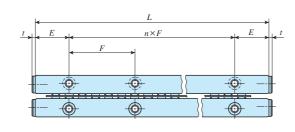


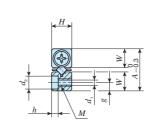

	Mass	s (Ref.)							Nominal (dimensio	ns mm								Basic dynamic	Basic static	Allowable
				Bou	undary dimensions		Dimensio	n of roller cage						Moun	ting dimer	nsions			load rating	load rating	load
Identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	E	D_{w}	R	Z	n	0	W	g	M	d	d	h	t	$C_{U}^{(3)}$	$C_{\text{oU}}(3)$	$F_{U}^{(3)}$
	kg/m	g	A	11	L(n×r)	L	D_{W}	A	L	p		,,,	8	171	a_1	a_2	"	į.	N	N	N
CRW 1- 20					20 (1×10)			16.5	5												
CRW 1- 20 SL					20 (1×10)			10.5	5												
CRW 1- 30					30 (2×10)			25.5	8												
CRW 1- 30 SL					30 (2×10)			25.5	0												
CRW 1- 40					40 (3×10)			31.5	10												
CRW 1- 40 SL					40 (3 × 10)			31.3	10												
CRW 1- 50	0.12	0.38	8.5	4	50 (4×10)	5	1.5	37.5	12	3	2.25	3.9	1.8	M2	1.65	3	1.4	1.7	125	120	39.8
CRW 1- 50 SL	0.12	0.00	0.0		00 (47/10)		1.0	07.0			2.20	0.0	1.0	1412	1.00		1.4		120	120	
CRW 1- 60					60 (5×10)			43.5	14												
CRW 1- 60 SL					00 (0110)			40.0													
CRW 1- 70					70 (6×10)			52.5	17												
CRW 1- 70 SL					70 (07.10)			52.5	.,												
CRW 1- 80					80 (7×10)			61.5	20												
CRW 1- 80 SL					30 (/ X 10)			01.0	20												I

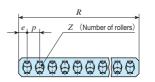
Notes (1) The value shows the mass per meter of a way.

(2) The value shows the mass of a roller cage with ten cylindrical rollers.
 (3) The value shows the load of a cylindrical roller.

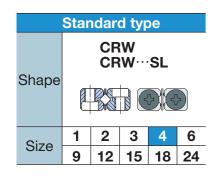


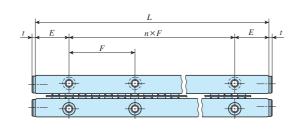

	Mass	(Ref.)		Por	undary dimensions		Dimonsio	n of roller cage	Nominal c	dimensio	ns mm			Mount	ting dimer	neione			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)						cage											$C_{\rm U}^{(3)}$	$C_{\text{oU}}^{(3)}$	$F_{U}^{(3)}$
	kg/m	g	A	Н	$L(n \times F)$	E	D_{W}	R	Z	p	e	W	g	M	$d_{\scriptscriptstyle 1}$	d_2	h	t	N	N	N
CRW 2- 30					30 (1×15)			29.6	7												
CRW 2- 30 SL					30 (17(13)			23.0													
CRW 2- 45					45 (2×15)			41.6	10												
CRW 2- 45 SL						-															
CRW 2- 60					60 (3×15)			53.6	13												
CRW 2- 60 SL CRW 2- 75																					
CRW 2- 75					75 (4×15)			65.6	16												
CRW 2- 90						-															
CRW 2- 90 SL					90 (5×15)			77.6	19												
CRW 2-105		0.00	40		105 (0)(15)		•	00.0							0.55			4.5	200	00.4	07.0
CRW 2-105 SL	0.24	0.98	12	6	105 (6×15)	7.5	2	89.6	22	4	2.8	5.5	2.5	M3	2.55	4.4	2	1.5	293	294	97.9
CRW 2-120					120 (7×15)			101.6	25												
CRW 2-120 SL					120 (1710)	-		101.0													
CRW 2-135					135 (8×15)			113.6	28												
CRW 2-135 SL						-															
CRW 2-150 CRW 2-150 SL					150 (9×15)			125.6	31												
CRW 2-165						-															
CRW 2-165 SL					165 (10×15)			137.6	34												
CRW 2-180						-															
CRW 2-180 SL					180 (11×15)			149.6	37												

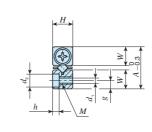

Notes (1) The value shows the mass per meter of a way.

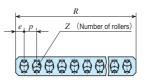

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

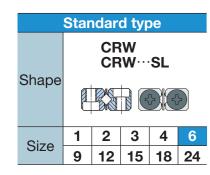


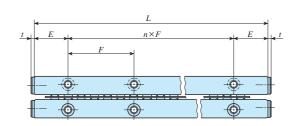

	Mass	s (Ref.)		Boi	undary dimensions		Dimensio	n of roller cage	Nominal (dimensio	ns mm			Mount	ing dimer	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number		Roller cage (2)	A	Н	$L(n \times F)$	E	D_{w}	R	Z	p	e	W	g	M	d_1	d_2	h	t	$C_{\rm U}$ ⁽³⁾	$C_{\text{oU}}(3)$	$F_{U}(^{3})$
	kg/m	g																	N	N	N
CRW 3- 50					50 (1×25)			42	8												I
CRW 3- 50 SL																					ı
CRW 3- 75					75 (2×25)			62	12												I
CRW 3- 75 SL																					I
CRW 3-100					100 (3×25)			82	16												I
CRW 3-100 SL																					I
CRW 3-125	-				125 (4×25)			102	20												I
CRW 3-125 SL	-					-															I
CRW 3-150					150 (5×25)			122	24												I
CRW 3-150 SL CRW 3-175																					I
CRW 3-175	0.50	2.96	18	8	175 (6×25)	12.5	3	142	28	5	3.5	8.3	3.5	M4	3.3	6	3.1	2	638	609	203
CRW 3-175 3L						-															I
CRW 3-200 SL					200 (7×25)			162	32												I
CRW 3-225	_																				I
CRW 3-225 SL					225 (8×25)			182	36												I
CRW 3-250						-															I
CRW 3-250 SL	-				250 (9×25)			202	40												I
CRW 3-275						-															I
CRW 3-275 SL	-				275 (10×25)			222	44												I
CRW 3-300					(I
CRW 3-300 SL					300 (11×25)			242	48											,	ı

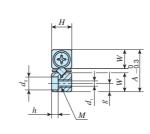

Notes (1) The value shows the mass per meter of a way.


(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

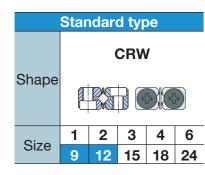


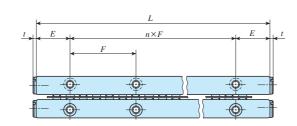

	Mass	s (Ref.)		Roi	undary dimensions		Dimensio	n of roller cage	Nominal (dimensio	ns mm			Moun	ing dimer	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	E	$D_{ m w}$	R	Z	p	e	W	g	M	d_1	d_2	$\begin{vmatrix} & & \\ & h & \end{vmatrix}$	t	$C_{U}^{(3)}$	C_{0U} (3)	$F_{U}^{(3)}$
	kg/m	g					vv			r			0		1	2			N	N	N
CRW 4- 80					80 (1×40)			73	10												
CRW 4- 80 SL						-															
CRW 4-120					120 (2×40)			101	14												
CRW 4-120 SL																					
CRW 4-160					160 (3×40)			136	19												
CRW 4-160 SL						-															
CRW 4-200	-				200 (4×40)			164	23												
CRW 4-200 SL CRW 4-240						-															
CRW 4-240 SL					240 (5×40)			199	28												
CRW 4-240 SL						-															
CRW 4-280 SL	0.82	6.91	22	11	280 (6×40)	20	4	227	32	7	5	10	4.5	M5	4.3	7.5	4.1	2	1 230	1 180	392
CRW 4-320						-															
CRW 4-320 SL	-				320 (7×40)			262	37												
CRW 4-360						_															
CRW 4-360 SL					360 (8×40)			297	42												l
CRW 4-400					400 (040)			205	40												
CRW 4-400 SL					400 (9×40)			325	46												l
CRW 4-440					440 (10×40)			260	E1											,	
CRW 4-440 SL					440 (10×40)			360	51												l
CRW 4-480					480 (11×40)			388	55											,	l
CRW 4-480 SL]				480 (11×40)			388	55											,	ı

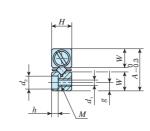

Notes (1) The value shows the mass per meter of a way.

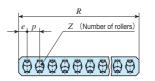

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

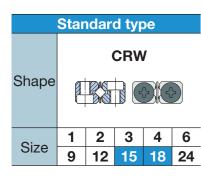


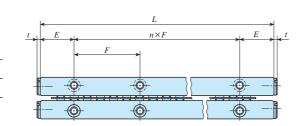

	Mass	s (Ref.)		Воц	ındary dimensions		Dimension	n of roller cage		nal dimensio	ons mm			Moun	ting dime	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	E	D_{w}	R		l p	e	W	g	M	d_1	d_2	h	t	$C_{U}^{(3)}$	$C_{\text{oU}}^{(3)}$	$F_{U}^{(3)}$
	kg/m	g			Z(((*)1)		Z W			P			8		W ₁	₂			N	N	N
CRW 6-100					100 (1×50)			84		,											
CRW 6-100 SL					100 (1700)			04	, and the second												
CRW 6-150	-				150 (2×50)			129	14												
CRW 6-150 SL					(=,																
CRW 6-200					200 (3×50)			165	18	3											
CRW 6-200 SL						-	-														
CRW 6-250					250 (4×50)			210	23	3											
CRW 6-250 SL	-					-	-														
CRW 6-300					300 (5×50)			246	27	,											
CRW 6-300 SL CRW 6-350																					
CRW 6-350 SL	1.57	20.3	31	15	350 (6×50)	25	6	282	31	9	6	14	6	M6	5.3	9.5	5.2	3	2 570	2 310	769
CRW 6-400						_	-														
CRW 6-400 SL					400 (7×50)			327	36	5											
CRW 6-450						_															
CRW 6-450 SL					450 (8×50)			363	40)											
CRW 6-500																					
CRW 6-500 SL					500 (9×50)			408	45												
CRW 6-550					FF0 (40×F0)	1		444													
CRW 6-550 SL					550 (10×50)			444	49	'											
CRW 6-600					600 (11×50)	1		489	-												
CRW 6-600 SL]				000 (11^50)			489	54	'											

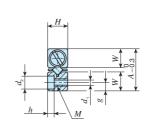

Notes (1) The value shows the mass per meter of a way.

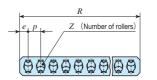

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

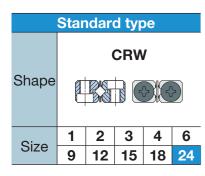


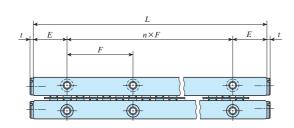

	Mass	s (Ref.)		Roi	undary dimensions		Dimensio	n of roller cage	N	ominal dim	nension	ns mm			Moun	ting dime	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	E	D_{W}			Z	p	e	W	g	M	d_{1}	d_2	$\begin{vmatrix} & & & \\ & h & & \end{vmatrix}$	t	$C_{U}^{(3)}$	$C_{\text{oU}}(3)$	$F_{U}^{(3)}$
	kg/m	g	71		E(n×1)	L	D _W	A				C	,,	8	141	u ₁	α ₂	"	Į į	N	N	N
CRW 9- 200					200 (1×100)			173		12												
CRW 9- 300					300 (2×100)			257		18												
CRW 9- 400					400 (3×100)			327		23												
CRW 9- 500					500 (4×100)			411		29												
CRW 9- 600					600 (5×100)			495		35												
CRW 9- 700	3.3	64.8	44	22	700 (6×100)	50	9	565		40	14	9.5	20.2	9	M 8	6.8	10.5	6.2	3	7 190	6 600	2 200
CRW 9- 800					800 (7×100)			649		46												
CRW 9- 900					900 (8×100)			733		52												
CRW 9-1000					1 000 (9×100)			817		58												
CRW 9-1100					1 100 (10×100)			887		63												
CRW 9-1200					1 200 (11×100)			971		69												
CRW 12- 200					200 (1×100)			168		9												
CRW 12- 300					300 (2×100)			258		14												
CRW 12- 400					400 (3×100)			330		18												
CRW 12- 500					500 (4×100)			420		23												
CRW 12- 600					600 (5×100)			492		27												
CRW 12- 700	5.57	146	58	28	700 (6×100)	50	12	564		31	18	12	26.9	12	M10	8.5	13.5	8.2	3	14 700	13 600	4 540
CRW 12- 800					800 (7×100)			654		36												
CRW 12- 900					900 (8×100)			726		40												
CRW 12-1000					1 000 (9×100)			816		45												
CRW 12-1100					1 100 (10×100)			888		49												
CRW 12-1200					1 200 (11×100)			978		54												

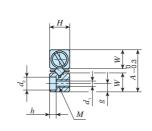

Notes (1) The value shows the mass per meter of a way.

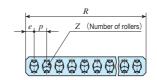

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

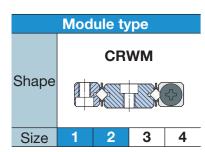

	Mass	s (Ref.)		Воц	ındary dimensions		Dimensio	n of roller cage	Nom	ninal dimens	sions mm			Moun	ting dime	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1) kg/m	Roller cage (2)	A	Н	$L(n \times F)$	E	D_{W}	R	2	Z p	e	W	g	M	d_1	d_2	h	t	C _U (3)	C_{0U} (3)	F _U (3)
CRW 15- 300*	1.9	9			300 (2×100)			261	1	1											
CRW 15- 400*	-				400 (3×100)			330	1	4											
CRW 15- 500*	-				500 (4×100)			422	1	8											
CRW 15- 600*					600 (5×100)			491	2	21											
CRW 15- 700*	0.75	070	74	00	700 (6×100)	50	4.5	583	2	25	45.5	00			10.5	40.5	100	_	00.000	04.000	7,000
CRW 15- 800*	8.75	273	71	36	800 (7×100)	50	15	652	2	23	15.5	33	14	M12	10.5	16.5	10.2	5	23 800	21 900	7 300
CRW 15- 900*					900 (8×100)			744	3	32											
CRW 15-1000*					1 000 (9×100)			813	3	35											1
CRW 15-1100*					1 100 (10×100)			905	3	9											
CRW 15-1200*					1 200 (11×100)			974	4	2											
CRW 18- 300*					300 (2×100)			262		9											
CRW 18- 400*					400 (3×100)			346	1	2											
CRW 18- 500*					500 (4×100)			430	1	5											
CRW 18- 600*					600 (5×100)			514	1	8											
CRW 18- 700*	11.3	447	83	40	700 (6×100)	50	18	570	2	28	19	38.5	18	M14	12.5	18.5	12.2	5	35 800	32 700	10 900
CRW 18- 800*	11.3	447	03	40	800 (7×100)	30	10	654	2	20	19	36.5	10	IVI I 4	12.5	16.5	12.2	5	33 600	32 100	10 900
CRW 18- 900*					900 (8×100)			738	2	26											
CRW 18-1000*					1 000 (9×100)			822	2	.9											
CRW 18-1100*					1 100 (10×100)			906	3	32											
CRW 18-1200*					1 200 (11×100)			990	3	35											


Notes (1) The value shows the mass per meter of a way.

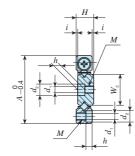

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

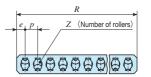

(3) The value shows the load of a cylindrical roller.

Remark: The identification numbers with * are our semi-standard items.

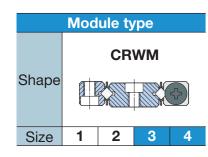


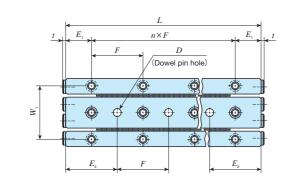
	Mas	s (Ref.)		Roi	ındary dimensions		Dimension	n of roller cage	Nominal	dimensio	ns mm			Mount	ing dimer	nsions			Basic dynamic load rating	Basic static load rating	Allowable load
Identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	E	D_{W}	R	Z	p	e	W	g	M	d_1	d_2	h	t	$C_{U}^{(3)}$	C_{0U} (3)	F _u (3)
CRW 24- 400*	9,	9			400 (3×100)			336	9												
CRW 24- 500*					500 (4×100)			408	11												I
CRW 24- 600*					600 (5×100)			516	14												I
CRW 24- 700*					700 (6×100)			588	16												I
CRW 24- 800*	20.6	1 060	110	55	800 (7×100)	50	24	660	18	36	24	51.5	24	M16	14.5	22.5	14.2	5	69 600	63 500	21 200
CRW 24- 900*					900 (8×100)			732	20												I
CRW 24-1000*					1 000 (9×100)			840	23												I
CRW 24-1100*					1 100 (10×100)			912	25												I
CRW 24-1200*					1 200 (11×100)			984	27												I

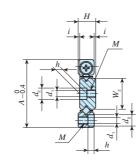

Remark: The identification numbers with * are our semi-standard items.

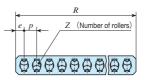

Notes (1) The value shows the mass per meter of a way.
(2) The value shows the mass of a roller cage with ten cylindrical rollers.

⁽³⁾ The value shows the load of a cylindrical roller.

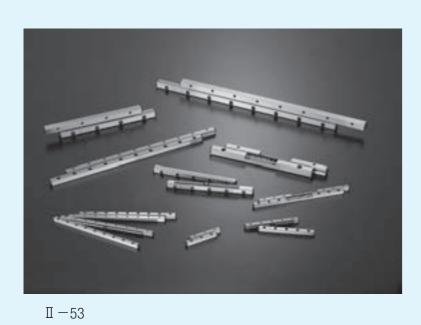





	Mass	s (Ref.)								Nomina	al dimer	sions a	ınd tole	rances	mm										Allowable
		ı		Bour	ndary dimensions	ı	Dir	mension of	roller cage					ı	ı	Mour	ting din	nension	S	ı				load rating	
Identification number	Way (1)	Roller cage (2)		77	$L(n \times F)$		D	D	7			117	117	P.	P.	34	ı	ı	1.		l Dim D	_	$C_{U}^{(3)}$	$C_{0U}^{(3)}$	$F_{U}^{(3)}$
	kg/m	g	A	Н	$L(n \times F)$	l l	D_{W}	R	Z	p	e	$W_{_1}$	W_{2}	E_1	E_2	M	d_1	d_2	h	D	Dim. D tolerance	t	N	N	N
CRWM 1- 20					20 (1×10)			16.5	5																
CRWM 1- 30					30 (2×10)			25.5	8																
CRWM 1- 40					40 (3×10)			31.5	10																
CRWM 1- 50	0.49	0.38	17	4.5	50 (4×10)	0.5	1.5	37.5	12	3	2.25	13.4	7.8	5	10	M2	1.65	3	1.4	2	+0.010	1.7	125	120	39.8
CRWM 1- 60					60 (5×10)			43.5	14																
CRWM 1- 70					70 (6×10)			52.5	17																
CRWM 1- 80					80 (7×10)			61.5	20																
CRWM 2- 30					30 (1×15)			29.6	7																
CRWM 2- 45					45 (2×15)			41.6	10																
CRWM 2- 60					60 (3×15)			53.6	13																
CRWM 2- 75					75 (4×15)			65.6	16																
CRWM 2- 90					90 (5×15)			77.6	19																
CRWM 2-105	0.99	0.98	24	6.5	105 (6×15)	0.5	2	89.6	22	4	2.8	19	11	7.5	15	МЗ	2.55	4.4	2	3	+0.010	1.5	293	294	97.9
CRWM 2-120					120 (7×15)			101.6	25																
CRWM 2-135					135 (8×15)			113.6	28																
CRWM 2-150					150 (9×15)			125.6	31																
CRWM 2-165					165 (10×15)			137.6	34																
CRWM 2-180					180 (11×15)			149.6	37																


Notes (1) The value shows the total mass per meter of a set of three ways.

(2) The value shows the mass of a roller cage with ten cylindrical rollers.
 (3) The value shows the load of a cylindrical roller.



	Mass	s (Ref.)								Nomina	al dimer	sions a	and tole	rances	mm									Basic static	
Identification number	(1)	D II (2)		Boui	ndary dimensions	I	Dir	mension of	roller cage	I	I		I	I	I	Mour	nting din	nension	S I				· ·	load rating	load
identification number	Way (1)	Roller cage (2)	A	H	$L(n \times F)$	i	D_{w}	R	Z	p	e	$W_{\scriptscriptstyle 1}$	W_2	E_1	E_2	M	d_1	d_2	h	D	Dim. D	t	$C_{U}^{(3)}$	$C_{\text{oU}}^{(3)}$	$F_{U}^{(3)}$
	kg/m	g					VV			1		'	2	'	2		'	2			tolerance		N	N	N
CRWM 3- 50					50 (1×25)			42	8																
CRWM 3- 75					75 (2×25)			62	12																
CRWM 3-100					100 (3×25)			82	16																
CRWM 3-125					125 (4×25)			102	20																
CRWM 3-150					150 (5×25)			122	24												. 0.040				
CRWM 3-175	1.99	2.96	36	8.5	175 (6×25)	0.5	3	142	28	5	3.5	29	16.6	12.5	25	M4	3.3	6	3.1	4	+0.012	2	638	609	203
CRWM 3-200					200 (7×25)			162	32																
CRWM 3-225					225 (8×25)			182	36																
CRWM 3-250					250 (9×25)			202	40																
CRWM 3-275					275 (10×25)			222	44																
CRWM 3-300					300 (11×25)			242	48																
CRWM 4- 80					80 (1×40)			73	10																
CRWM 4-120					120 (2×40)			101	14																
CRWM 4-160					160 (3×40)			136	19																
CRWM 4-200					200 (4×40)			164	23																
CRWM 4-240					240 (5×40)			199	28																
CRWM 4-280	3.28	6.91	44	11.5	280 (6×40)	0.5	4	227	32	7	5	35	20	20	40	M5	4.3	7.5	4.1	5	+0.012	2	1 230	1 180	392
CRWM 4-320					320 (7×40)			262	37	1															
CRWM 4-360					360 (8×40)			297	42																
CRWM 4-400					400 (9×40)			325	46																
CRWM 4-440					440 (10×40)			360	51																
CRWM 4-480					480 (11×40)			388	55																

Notes (1) The value shows the total mass per meter of a set of three ways.

(2) The value shows the mass of a roller cage with ten cylindrical rollers.

(3) The value shows the load of a cylindrical roller.

-53

Anti-Creep Cage Crossed Roller Way Unit

Points

High rigidity and high accuracy

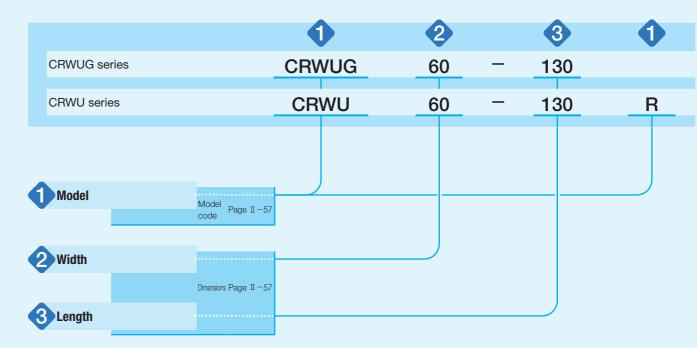
Since CRWG or CRW with excellent load balance is incorporated with grounded high rigidity table and bed, elastic deformation is small for load in every direction, leading to highly accurate and stable linear motion.

Solves cage creep issue

As CRWG with cage creep proof function is incorporated with CRWUG, there is no risk of cage creep and it works reliable in high-speed and high-tact operation, or in vertical axis.

Wide variation

Three types of CRWU with different sectional shapes are available with many size variations. You can select an optimal product for the specifications of your machine and device.


Easy mounting

Mounting surface is precisely grounded. In addition, female screws and boring are used for table and bed, respectively to ensure appropriate preload state. Therefore, highly reliable linear motion can be achieved just by fitting them to the machine and device.

Identification Number and Specification

Example of an identification number

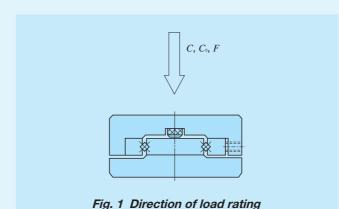
The specification of CRWUG and CRWU series is indicated by the identification number. Indicate the identification number, consisting of a model code, width, and length for each specification to apply.

Identification Number and Specification

Model	Anti-Creep Cage Crossed Roller Way Un	nit (CRWUG : CRWUG
	series)	iii (Oriwod - Oriwod
	Crossed Roller Way Unit (CRWU series)	: CRWU : CRWU···R : CRWU···RS
	For applicable models and width, see Fig	g. 1.
2 Width	20, 30, 40, 60, 80, 100, 145 Ir	ndicate the table width in mm.
	F	or applicable models and width, see Table 1.

3 Length Indicate the table length in mm.

Table 1 Models and width of CRWUG series and CRWU series


Carrian	Chana	Madal	Ohawa atawiatia a			,	Width			
Series	Shape	Model	Characteristics	20	30	40	60	80	100	145
CRWUG		CRWUG	A unit with cage creep proof function that realizes complete compatibility with CRWU in mounting dimensions. As external dimensions are the same, this can replace machine or device using CRWU without changing mounting dimensions, as well as new applications.	-	_	0	0	0		-
		CRWU	An ordinary type unit to be fixed to machine or device with bolts as it is, thanks to table and bed mounted to high accuracy.	_	0	0	0	0	0	0
CRWU		CRWU···R	Low height unit without CRWU bed. Linear motion with stable accuracy and high rigidity can be achieved for load in every direction.	-	0	0	0	0	0	0
		CRWURS	A compact and light unit of very simple structure. This may be used as a high-accuracy unit with small motion inertia by moving the center way.	0	0	0	-	-	-	_

Load Rating and Allowable Load _____

Indicate values for down direction for load rating of CRWUG and CRWU series.

In addition, the upward and lateral load rating is the same as downward load rating.

For more information on the definition of load rating and calculated load, see page \mathbb{I} -3.

 T_{\circ}

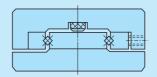
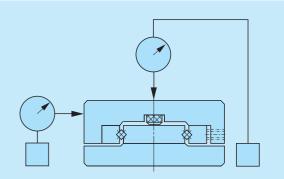


Fig. 2 Direction of static moment rating

Allowable load

Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small.

Therefore, use applied load within the allowable load range if very smooth rolling motion and high accuracy are required.


Accuracy

Accuracy of CRWUG series and CRWU series is indicated in Table 2. Parallelism at the center of the table represents parallelism of height when the table is stroked.

Parallelism at the side of the table represents parallelism of the side (preload adjusting screw side) when the table is stroked.

In addition, though allowance of unit height H is designed as ± 0.1 mm, units with height variation of less than 0.01 mm among multiple units are also available. When special accuracy is needed, contact IKO.

Table 2 Running accuracy

unit: μ m

			arnti prin
Unit leng Over	th L mm	Parallelism at the table center	Parallelism on the table side
_	50	2	4
50	100	2	5
100	160	3	6
160	310	3	7
310	510	4	8
510	710	4	9
710	_	5	10

Lubrication

Grease is not pre-packed in the CRWUG series and CRWU series, so please perform adequate lubrication as needed. Both of oil lubrication and grease lubrication are available in the CRWUG series and CRWU series. Generally, oil lubrication should be selected for high speed or low frictional resistance, and grease lubrication for low speed. For grease lubrication, use of high-quality lithium-soap base grease is recommended.

Dust Protection

Since the CRWUG series and CRWU series are finished with high accuracy, harmful foreign substances such as dust and particles entering into the bearing will cause low life or impaired accuracy. For applications in other than clean environment, cover the entire unit with a protective case, etc. to prevent harmful foreign substances such as dust, particles and water from outside from entering.

Precaution for Use.

Handling

As the CRWUG series and CRWU series are designed highly precisely, take extra care for handling.

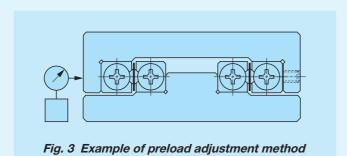
Cage of the CRWUG series has a pinion gear incorporated. When the cage is dropped or handled roughly, the pinion gear may come off. In addition, do not cut off the cage as doing so may cause pinion gear coming off and breakage of gear joint section.

Way of the CRWUG series has a rack incorporated. In operation, take note that the rack may come off when the end screw is removed.

For the CRWU series, the cage may be deviated from the right position due to offset load or irregular and high-velocity motion, etc. Fully stroke it once in certain operating time or certain number of reciprocating motion to correct the cage position.

2 Preload re-adjustment

Preload amount of the CRWUG series and CRWU series is adjusted to zero or slight preload state, so they may be used as they are.


Preload amount of the CRWUG series, CRWU, and CRWU...
R may be re-adjusted by following the procedure below.

Preload adjustment is started from the preload adjusting screw at the center of way length and then both ends in turn, with fixing screws of the preload adjusting side way temporarily fixed.

While measuring the clearance on the table sides, tighten the preload adjusting screws subsequently until deflection of the dial gauge stops. Measure the tightening torque for preload adjusting screws at this point.

When adjusting preload adjusting screw near either end, stroke the table softly and check that the cylindrical roller is on the preload adjusting screw section.

After the above procedure, the clearance becomes zero or in slight preload state, but preload is still not adjusted evenly. With the same procedure again, re-adjust all the preload adjusting screws evenly to the torque previously measured.

3 Operating temperature

As synthetic resin components are used for the CRWUG series, the maximum operating temperature is 120°C, while it should be lower than 100°C for continuous use. When it exceeds 100°C, contact IKO.

As synthetic resin components are not used for the CRWU series, it may be used at high temperature. However, when it exceeds 100°C, contact IKO.

Maximum velocity

Operating velocity should not exceed 30 m/min during operation.

5 Tightening torque for fixing screw

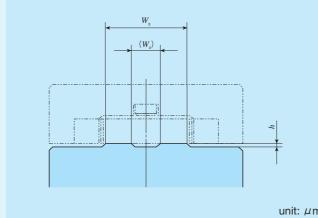
Table 3 shows typical tightening torque for mounting CRWUG Series and CRWU Series. When vibration and shock are large or moment load is applied, it is recommended to fix by using the torque 1.3 times larger than that indicated in the table. In addition, when high running accuracy is required with no vibration and shock, it may be fixed by using torque smaller than that indicated in the table, however, it is recommended to use adhesive agent to fasten the screw, or to use stop bolts.

Table 3 Tightening torque for fixing screw

Bolt size	Tightening torque N · m
M 2 ×0.4	0.40
M 2.5×0.45	0.80
M 3 ×0.5	1.4
M 4 ×0.7	3.2
M 5 ×0.8	6.4
M 6 ×1	10.9
M 8 ×1.25	26.1

6 Dowel pin hole of CRWU···R

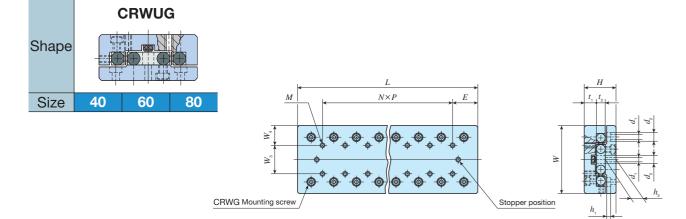
A dowel pin hole is machined on the center way of the CRWU···R. When a dowel pin is used, machine a hole on the mounting surface of the machine after mounting of the center way.

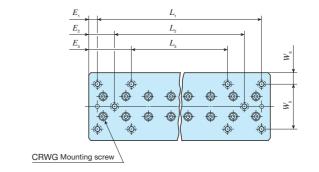

Refer to the dimension table for diameter and its tolerances of dowel pin hole of the center way.

Mounting part dimensions of CRWU···R

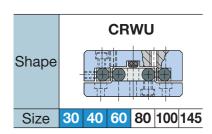
Not to allow the table to interfere with the mounting surface, it is necessary to set mounting surface height referring to the dimensions H, and H in the dimension table.

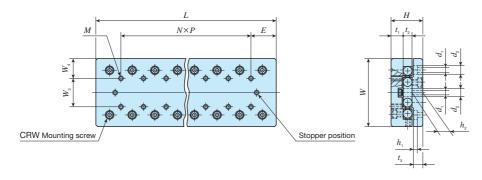
Example bed mounting dimensions are indicated in Table 4.

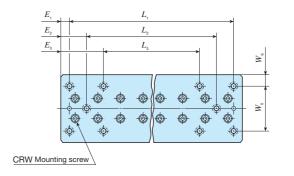

Table 4 Example of mounting dimensions of CRWU···R bed

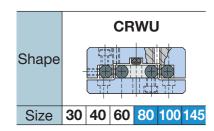


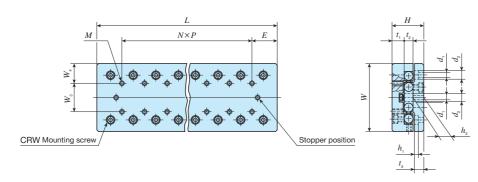
			unit: µm
Identification number	h (minimum)	W_3	W_4
CRWU 30 ···R	0.5	13	_
CRWU 40-35R	0.5	18	_
CRWU 40 ···R	0.5	13	
CRWU 60 ···R	0.5	26.5	_
CRWU 80 ···R	0.5	38	16
CRWU100 ···R	0.5	42	14
CRWU145 ···R	1.0	68.5	28.5

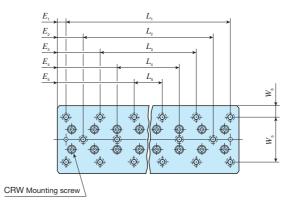

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch


IKO Anti-Creep Cage Crossed Roller Way Unit

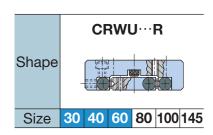


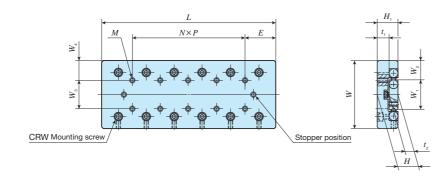

Identification	Mass			Nomi	inal dim	ensions mm		olerance	es		Ta	able mo	unting di	mensio	ns					Bed	mountin m	_	sions					Basic dynamic load rating	Basic static load rating	Allowable load	Static mome rating
number	(Ref.)	W	Dim. W tolerance	Н	Dim. H tolerance	L	t ₁	t ₂	t ₃	Maximum stroke length	W_3	W_4	$N \times P$	E	M	W_{5}	W_6	L ₁	E_1	L_2	E_2	L_3	E_3	$d_{\scriptscriptstyle 1}$	d_{2}	h_1	h_2	C N	C ₀ N	F N	T_0 N·m
CRWUG 40- 35	0.21					35	8	6	6.5	18			_					25								3.5	7	913	1 180	392	10.6
CRWUG 40- 50	0.30					50				30			1×15					40				_	-					2 000	2 440	813	17.7
CRWUG 40- 65	0.36					65	1			40			2×15					55										2 000	2 440	813	17.7
CRWUG 40- 80	0.47	40	±0.1	21	±0.1	80] _			50	15	12.5	3×15	17.5	МЗ	30	5	70	5.0	_	_	40		3.5	6			3 430	4 880	1 630	35.3
CRWUG 40- 95	0.53					95	'	8	5.5	60			4×15					85				55	00			3.2	6	2 740	3 660	1 220	26.5
CRWUG 40-110	0.63					110	1			70			5×15					100	1			70	20					4 080	6 090	2 030	44.2
CRWUG 40-125	0.70					125	1			80			6×15					115	1			85						4 080	6 090	2 030	44.2
CRWUG 60- 55	0.67					55				30			_					35										2 000	2 440	813	35.3
CRWUG 60- 80	0.99					80]			45			1×25					60		_	_							3 430	4 880	1 630	70.7
CRWUG 60-105	1.28	60	±0.1	28	±0.1	105	10.5	8	9	60	25	17.5	2×25	27.5	M4	40	10	85	10.0	_	_	_	-	4.5	7.5	4.5	9.5	4 700	7 310	2 440	106
CRWUG 60-130	1.57					130				75			3×25					110										5 300	8 530	2 840	124
CRWUG 60-155	1.86					155				90			4×25					135		85	35							6 440	11 000	3 660	159
CRWUG 80- 85	1.78					85				50			_					65	10.0									5 350	7 050	2 350	145
CRWUG 80-125	2.56	80	±0.1	35	±0.1	125	13	11	10.5	75	40	20	1×40	42.5	M5	60	10	80		_	_	-	-	5.5	9.5	6	11	7 960	11 800	3 920	241
CRWUG 80-165	3.34	ou		33	±0.1	165	13	''	10.5	105	40	20	2×40	42.5	IVIO	00	10	120	22.5					5.5	9.0	0	''	9 180	14 100	4 700	289
CRWUG 80-205	4.12					205]			135			3×40					160	1			80	62.5					11 500	18 800	6 270	385



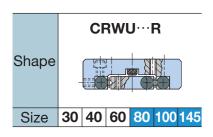


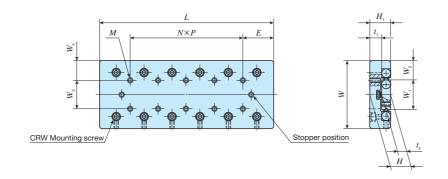
				Nomi	nal dim	nensions		oleranc	es		Ta	able mo	ounting di	mensio	ns					Bed r		g dimen	sions					Basic dynamic			
Identification number	Mass (Ref.)		Dim. W		Dim. H tolerance	mm L	<i>t</i> ₁	t_2	t ₃	Maximum stroke length	W_3	W_4	mm N×P	E	M	W_{5}	W_{6}	L_1	$E_{\scriptscriptstyle 1}$	L_2	E_2	$L_{_3}$	E_3	d_1	d_2	h_1	h_2	load rating C N	C_0	load F N	rating $T_{ ext{o}}$ N \cdot m
CRWU 30- 25	0.09					25				12			_					18										380	478	159	3.2
CRWU 30- 35	0.13					35				18			1×10					28				_	_					525	717	239	4.8
CRWU 30- 45	0.17					45				25			2×10					38										659	956	319	6.5
CRWU 30- 55	0.20	30	±0.1	17	±0.1	55	7	4	5.5	32	10	10	3×10	12.5	M2	22	4	48	3.5	_	-	28		2.55	4.1	2.5	6	786	1 200	398	8.1
CRWU 30- 65	0.24					65				40			4×10					58				38	13.5					906	1 430	478	9.7
CRWU 30- 75	0.28					75				45			5×10					68				45	13.3					1 020	1 670	558	11.3
CRWU 30- 85	0.32					85				50			6×10					78				58						1 140	1 910	638	12.9
CRWU 40- 35	0.21					35	8	6	6.5	18			_					25								3.5	7	896	1 180	392	10.6
CRWU 40- 50	0.30					50				30			1×15					40				_	_					2 710	3 660	1 220	26.5
CRWU 40- 65	0.37					65				40			2×15					55										2 710	3 660	1 220	26.5
CRWU 40- 80	0.48	40	±0.1	21	±0.1	80	7	8	5.5	50	15	12.5	3×15	17.5	МЗ	30	5	70	5	_	_	40		3.5	6	3.2	6	4 050	6 090	2 030	44.2
CRWU 40- 95	0.54					95	,	O	0.0	60			4×15					85				55	20			0.2	0	3 400	4 880	1 630	35.3
CRWU 40-110	0.65					110				70			5×15					100				70	20					4 680	7 310	2 440	53.0
CRWU 40-125	0.72					125				80			6×15					115				85						4 680	7 310	2 440	53.0
CRWU 60- 55	0.68					55				30			_					35										2 710	3 660	1 220	51.2
CRWU 60- 80	1.0					80				45			1×25					60		_	_							4 050	6 090	2 030	85.3
CRWU 60-105	1.3					105				60			2×25					85				_	_					5 270	8 530	2 840	119
CRWU 60-130	1.6	60	±0.1	28	±0.1	130	10.5	8	9	75	25	17.5	3×25	27.5	M4	40	10	110	10					4.5	7.5	4.5	9.5	5 860	9 750	3 250	137
CRWU 60-155	1.9					155				90			4×25					135		85								6 970	12 200	4 060	171
CRWU 60-180	2.2					180				105			5×25					160		110	35							8 040	14 600	4 880	205
CRWU 60-205	2.5					205				130			6×25					185		135		85	60					8 550	15 800	5 280	222

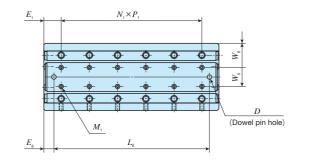




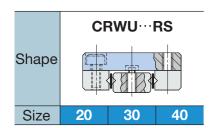
Identification	Mass		Nomi	nal dime	ensions mm		oleran	ces		Tab	ole mo	unting d	mensi	ons						l	Bed m		g dimer	nsions							Basic dynamic load rating		Allowable load	Static moment rating
number	(Ref.)	W │ Dim. W	H	Dim. H		t,	t	t	Maximum	W_3	W_4	$N \times P$	E	M	W_{5}	W_{ϵ}	L,	E_1	I	E_2	L_3	E_3	L_4	E_4	L_{5}	E_5		d_2	h	h_2	C	C_0	F	$T_{\scriptscriptstyle 0}$
	kg	tolerance		tolerance		*1	<i>t</i> ₂	<i>I</i> ₃	stroke length	773	4	1471	L	171	775	7 6	<i>L</i> ₁	L ₁	L_2	<i>L</i> ₂	<i>L</i> ₃	<i>L</i> ₃	<i>L</i> ₄	<i>L</i> ₄	<i>L</i> ₅	<i>L</i> ₅	d_1	<i>u</i> ₂	111	112	N	N	N	N·m
CRWU 80- 85	1.8				85				50			_					65	10													6 640	9 400	3 130	188
CRWU 80-125	2.6				125				75			1× 40					80				_	_									9 130	14 100	4 700	282
CRWU 80-165	3.4				165				105			2× 40					120								_	_					10 300	16 500	5 480	329
CRWU 80-205	4.2	80 ±0.1	35	±0.1	205	13	11	10.5	135	40	20	3× 40	42.5	M5	60	10	160	22.5	_	-	80		_	_			5.5	9.5	6	11	12 500	21 200	7 050	423
CRWU 80-245	5.1				245				155			4× 40					200				120	62.5									14 700	25 900	8 620	517
CRWU 80-285	5.9				285				185			5× 40					240				160	02.0									16 700	30 600	10 200	611
CRWU 80-325	6.7				325				215			6× 40					280				200				120	102.5					18 700	35 300	11 800	705
CRWU 100-110 [*]	3.6				110				60			_					90		_	_											13 900	18 500	6 150	415
CRWU 100-160*	5.2				160				95			1× 50					140														16 600	23 100	7 690	519
CRWU 100-210*	6.9				210				130			2× 50					190		90		_	_									21 600	32 300	10 800	727
CRWU 100-260*	8.5	100 ±0.15	45	±0.1	260	16	15	13	165	50	25	3× 50	55	M6	60	20	240	10	140				_	_	-	_	7	11	6.5	14	26 300	41 500	13 800	934
CRWU 100-310*	10.2				310				200			4× 50					290		190	60											30 800	50 700	16 900	1 140
CRWU 100-360*	11.8				360				235			5× 50					340		240		140	110									35 100	60 000	20 000	1 350
CRWU 100-410*	13.5				410				265			6× 50					390		290		190	110									37 200	64 600	21 500	1 450
CRWU 145-210 [*]	13.2				210				130			_					100		_	_											39 400	52 800	17 600	1 900
CRWU 145-310*	19.6				310				180			1×100					200				_	_									61 200	92 300	30 800	3 320
CRWU 145-410 [*]	25.9				410				350			2×100					300		100				_	_							67 900	106 000	35 200	3 800
CRWU 145-510°	32.2	145 ±0.2	60	±0.1	510	21	22	16	450	85	30	3×100	105	M8	90	27.5	400	55	200] [_	_	9	14	8.5	17.5	74 400	119 000	39 600	4 270
CRWU 145-610*	38.6				610				550			4×100					500		300	155	100										87 100	145 000	48 400	5 220
CRWU 145-710°	45.0				710				650			5×100					600		400		200	255									99 200	172 000	57 200	6 170
CRWU 145-810 [*]	51.3				810				750			6×100					700		500		300		100	355							111 000	198 000	66 000	7 120

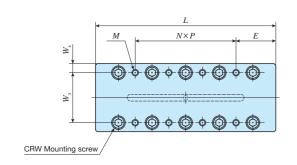

Remark: The identification numbers with * are our semi-standard items.

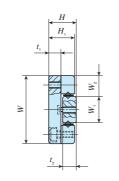


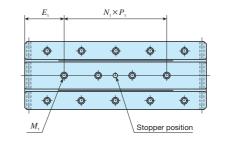


		1	Nominal		sions and	d tolerar	nces		Ta	able mou	_	mensio	าร				С	enter w	ay mou	_	mensions	and tol	erances	3			Basic dynamic load rating			Static moment rating
Identification number	Mass (Ref.)	117	Dias W		mm	,	Maximum	117	117	l Wy D	mm	,,			117		N V D				nm	,		117	117		C	C_0	F	T_0
	kg		Dim. W tolerance	H	Dim. H tolerance	L	stroke length	W_3	W_4	$N \times P$	E	M	H_1	t ₁	W_{5}	W_{6}	$N_1 \times P_1$	E_1	$M_{\scriptscriptstyle 1}$	D	Dim. D tolerance	L_6	E_{6}	W_1	W_2	t_2	N	N	N	N⋅m
CRWU 30- 25R	0.06					25	12			_							1×10										380	478	159	3.2
CRWU 30- 35R	0.08					35	18			1×10							2×10			_	-	_	_				525	717	239	4.8
CRWU 30- 45R	0.11					45	25			2×10							3×10										659	956	319	6.5
CRWU 30- 55R	0.13	30	±0.1	11	±0.1	55	32	10	10	3×10	12.5	M2	11	7	_	15	4×10	7.5	M2			30		12.8	8.6	4	786	1 200	398	8.1
CRWU 30- 65R	0.16					65	40			4×10							5×10			2	+0.020	40	12.5				906	1 430	478	9.7
CRWU 30- 75R	0.18					75	45			5×10							6×10			2	0	50	12.5				1 020	1 670	558	11.3
CRWU 30- 85R	0.21					85	50			6×10							7×10					60					1 140	1 910	638	12.9
CRWU 40- 35R	0.13			14		35	18			_			14	8			1×15	10						17	11.5	6	896	1 180	392	10.6
CRWU 40- 50R	0.21					50	30			1×15							2×15	10		_	_	_	_				2 710	3 660	1 220	26.5
CRWU 40- 65R	0.26					65	40			2×15							2×15	17.5									2 710	3 660	1 220	26.5
CRWU 40- 80R	0.34	40	±0.1	15	±0.1	80	50	15	12.5	3×15	17.5	M3	15	7	_	20	4×15	10	M3			45	17.5	13.1	13.45	8	4 050	6 090	2 030	44.2
CRWU 40- 95R	0.38			15		95	60			4×15			15	'			4×15	17.5		3	+0.020	40	25	10.1	10.40		3 400	4 880	1 630	35.3
CRWU 40-110R	0.46					110	70			5×15							5×15	17.5			0	60					4 680	7 310	2 440	53.0
CRWU 40-125R	0.50					125	80			6×15							5×15	25				00	32.5				4 680	7 310	2 440	53.0
CRWU 60- 55R	0.44					55	30			_							1×25					35					2 710	3 660	1 220	51.2
CRWU 60- 80R	0.66					80	45			1×25							2×25					60					4 050	6 090	2 030	85.3
CRWU 60-105R	0.85					105	60			2×25							3×25				10000	85					5 270	8 530	2 840	119
CRWU 60-130R	1.1	60	±0.1	18.5	±0.1	130	75	25	17.5	3×25	27.5	M4	18.5	10.5	17	21.5	4×25	15	M4	4	+0.020	110	10	26.6	16.7	8	5 860	9 750	3 250	137
CRWU 60-155R	1.3					155	90			4×25							5×25					135					6 970	12 200	4 060	171
CRWU 60-180R	1.5					180	105			5×25							6×25					160					8 040	14 600	4 880	205
CRWU 60-205R	1.7					205	130			6×25							7×25					185					8 550	15 800	5 280	222








Libertiff and a	Mass	ı	Nominal		sions and	d tolerar	nces		Т	able mou	nting di	mensior	าร				С	enter w	ay mou	_	mensions nm	and tole	erances	5			Basic dynamic load rating			Static moment rating
Identification number	(Ref.)	W	Dim. W tolerance	Н	Dim. H	L	Maximum stroke length	W_3	W_4	$N \times P$	E	M	H_1	t ₁	W_{5}	W_{6}	$N_1 \times P_1$	E_1	$M_{\scriptscriptstyle 1}$	D	Dim. D tolerance	$L_{\scriptscriptstyle 6}$	E_{6}	W_1	W_2	t ₂	C N	C ₀ N	F N	$T_{\scriptscriptstyle 0}$ N \cdot m
CRWU 80- 85R	1.2					85	50			_							1×40					55					6 640	9 400	3 130	188
CRWU 80-125R	1.8					125	75			1×40							2×40					95					9 130	14 100	4 700	282
CRWU 80-165R	2.3					165	105			2×40							3×40					135					10 300	16 500	5 480	329
CRWU 80-205R	2.9	80	±0.1	24	±0.1	205	135	40	20	3×40	42.5	M5	24	13	27	26.5	4×40	22.5	M5	5	+0.020	175	15	38	21	11	12 500	21 200	7 050	423
CRWU 80-245R	3.5					245	155			4×40							5×40					215					14 700	25 900	8 620	517
CRWU 80-285R	4.0					285	185			5×40							6×40					255					16 700	30 600	10 200	611
CRWU 80-325R	4.6					325	215			6×40							7×40					295					18 700	35 300	11 800	705
CRWU 100-110R*	2.4					110	60			_							1×50					70					13 900	18 500	6 150	415
CRWU 100-160R*	3.6					160	95			1×50							2×50					120					16 600	23 100	7 690	519
CRWU 100-210R*	4.7					210	130			2×50							3×50					170					21 600	32 300	10 800	727
CRWU 100-260R*	5.9	100	±0.15	31	±0.1	260	165	50	25	3×50	55	M6	31	16	26	37	4×50	30	M6	5	+0.020	220	20	42	29	15	26 300	41 500	13 800	934
CRWU 100-310R*	7.0					310	200			4×50							5×50					270					30 800	50 700	16 900	1 140
CRWU 100-360R*	8.1					360	235			5×50							6×50					320					35 100	60 000	20 000	1 350
CRWU 100-410R*	9.3					410	265			6×50							7×50					370					37 200	64 600	21 500	1 450
CRWU 145-210R*	9.4					210	130			_							1×100					150					39 400	52 800	17 600	1 900
CRWU 145-310R*	13.9					310	180			1×100							2×100					250					61 200	92 300	30 800	3 320
CRWU 145-410R*	18.4					410	350			2×100							3×100					350					67 900	106 000	35 200	3 800
CRWU 145-510R*	23.0	145	±0.2	42.5	±0.1	510	450	85	30	3×100	105	M8	43	21	46	49.5	4×100	55	M8	5	+0.020	450	30	68.4	38.3	21	74 400	119 000	39 600	4 270
CRWU 145-610R*	27.5					610	550			4×100							5×100					550					87 100	145 000	48 400	5 220
CRWU 145-710R*	32.0					710	650			5×100							6×100					650					99 200	172 000	57 200	6 170
CRWU 145-810R*	36.6					810	750			6×100							7×100					750					111 000	198 000	66 000	7 120

Remark: The identification numbers with * are our semi-standard items.

	Mass (Ref.)		Nomina		sions and to mm	olerances	S		Table r	nounting dir	mensions					Cente	r way moun		nsions			Basic static load rating	Allowable load	Static moment rating
Identification number	kg	W	Dim. W tolerance	Н	Dim. H tolerance	L	Maximum stroke length	W_3	$W_{_4}$	$N \times P$	E	М	$H_{\scriptscriptstyle 1}$	t ₁	$W_{_1}$	W_{2}	$N_1 \times P_1$	$E_{\scriptscriptstyle 1}$	<i>M</i> ₁	t_2	C N	<i>C</i> ₀ N	F N	T_0 N·m
CRWU 20- 25RS	0.03					25	12			1×18	3.5						2× 7.5	5			380	478	159	1.8
CRWU 20- 35RS	0.05	00	101	0	101	35	18	14		1×28	3.5	M2.5	7.5	0.5	7	0.5	2×10		NAO E	4	525	717	239	2.8
CRWU 20- 45RS	0.06	20	±0.1	8	±0.1	45	25	14	3	1×20	12.5	IVIZ.5	7.5	3.5	/	6.5	3×10	7.5	M2.5	4	659	956	319	3.7
CRWU 20- 55RS	0.07					55	32			1×30	12.5						4×10				786	1 200	398	4.6
CRWU 30- 65RS	0.20					65	40			1×30							3×15				1 850	2 940	979	19.1
CRWU 30- 80RS	0.24	30	±0.1	12	±0.1	80	50	22	4	1×45	17.5	МЗ	11.5	5.5	12	9	4×15	10	M3	6	2 130	3 530	1 180	22.9
CRWU 30- 95RS	0.29					95	60			2×30							5×15				2 410	4 110	1 370	26.7
CRWU 40-105RS	0.58					105	60			1×50							3×25				4 680	7 310	2 440	63.6
CRWU 40-130RS	0.72	40	±0.1	16	±0.1	130	75	30	5	1×75	27.5	M4	15.5	7.5	16	12	4×25	15	M4	8	5 860	9 750	3 250	84.8
CRWU 40-155RS	0.85					155	90			2×50							5×25				6 970	12 200	4 060	106

Linear Slide Unit

High Rigidity Precision Linear Slide Unit Precision Linear Slide Unit Linear Slide Unit

II - 73

Points

Simple limited linear motion guide structure

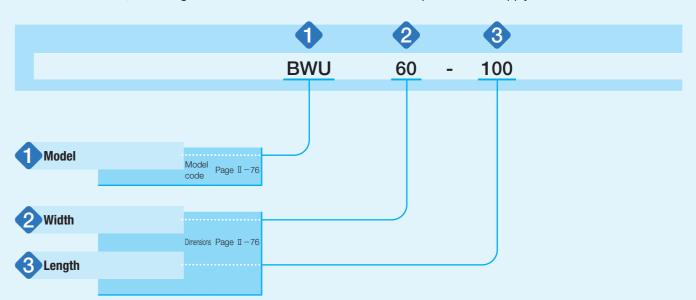
Small and simple limited stroke type structure incorporated with balls and retainer between integrated table and bed. With two-row four-point contact structure, stable accuracy and rigidity can be achieved even in applications where fluctuating load and complex load are applied.

High accuracy

Simultaneous grinding process of two-row track grooves is applied to table and bed, which provides small processing errors and realizes linear motion of high accuracy.

Smooth operations

As each component is finished with accuracy without recirculation resistance of the balls, light and smooth operations are obtained.


Stainless steel selections for excellent corrosion resistance

Stainless steel highly resistant to corrosion is used for all steel components, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

Identification Number and Specification

Example of an identification number

The specification of BWU series is indicated by the identification number. Indicate the identification number, consisting of a model code and dimensions for each specification to apply.

Identification Number and Specification

1 Model	High Rigidity Precision Linear Slide Unit (BWU series) For applicable models, width and len	: BWU
2 Width	6, 8, 10, 12, 17, 25, 30, 40, 60	Indicate the table width in mm. For applicable models, width and length, see Table 1.
3 Length		Indicate the table length in mm. For applicable models, width and length, see Table 1.

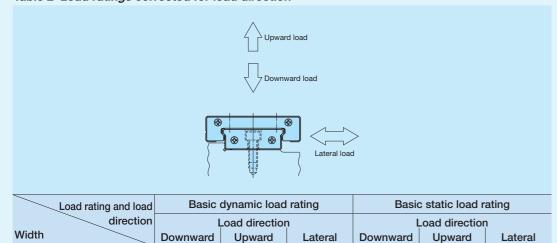
Table 1 Width and length of BWU series

un	i+۰	m
un	ıı.	111

Chana	Madal	Width							Length						
Shape	Model	wiatn	10	15	20	25	30	40	45	60	75	80	90	100	120
		6	0	_	0	_	0	_	_	-	_	_	-	_	_
		8	0	_	0	_	0	_	_	_	_	_	_	_	_
		10	_	0	_	0	_	0	_	_	_	_	_	_	_
⊕ ///, <u>□</u> ///,		12	_	_	0	_	0	_	0	_	_	_	_	_	_
	BWU	17	_	_	0	_	0	_	0	_	_	_	_	_	_
		25	_	_	_	_	0	_	0	0	0	_	_	_	_
		30	_	_	_	_	0	_	0	0	0	_	0	_	_
		40	_	_	_	_	_	0	_	0	_	0	_	0	_
		60	_	_	_	_	_	_	_	0	_	0	_	0	0

 \square -75

Allowable Load

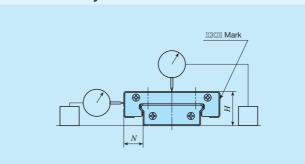

Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small.

Therefore, use applied load within the allowable load range if very smooth rolling motion and high accuracy are required.

Load Direction and Load Rating

The BWU series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 2.

Table 2 Load ratings corrected for load direction


1.19*C*

 $1.19C_{0}$

Accuracy

Accuracy of the BWU series is indicated in Table 3 and Table 4.

Table 3 Accuracy

unit: mm

Item	Tolerance and allowance
Dim. H tolerance	±0.040
Dim. N tolerance	±0.050
Parallelism at the table center	See Table 4
Parallelism on the table side	See Table 4

Table 4 Running accuracy

10010 1 1101	mmig accur	20,	G
Nominal le	ngth L mm	Parallelism at the	Parallelism on the
Over	Incl.	table center (1)	table side (2)
-	50	4	6
50	80	5	8
80	120	6	9

Notes (1) Parallelism at the center of the table represents parallelism of height when the table is stroked.

(2) Parallelism at the side of the table represents parallelism of the side (the opposite side of IIII mark) when the table is stroked.

Preload

Preload for the BWU series is adjusted to proper preload state.

Lubrication

Grease is not pre-packed in the BWU series, so please perform adequate lubrication as needed.

Upon delivery, anti-rust oil is applied. Therefore, perform cleaning with clean solution before mounting and apply high-quality lubrication oil or grease before use. For grease lubrication, use of high-quality lithium-soap base grease is recommended.

Since no grease nipple or oil hole is provided, apply grease directly to the raceway part of the bed when supplying the grease.

Dust Protection

No dust protection seal is provided for BWU series. For applications in other than clean environment, cover the entire unit with a protective case, etc. to prevent harmful foreign substances such as dust and particles from outside from entering.

6~60

Precaution for Use _____

Handling

When high running accuracy is required, set the load point at the center of the table (or bed) and use with sufficient stroke length.

For the BWU series, the retainer may be deviated from the right position due to offset load or irregular and high-velocity motion, etc. Fully stroke it once in certain operating time or certain number of reciprocating motion to correct the retainer position.

Since there is no built-in mechanical stopper to regulate linear motion in the event of collision, install a stopper mechanism in proximity if risk of overstroke exists.

The fixing thread depth of mounting screws for table must not exceed the maximum fixing thread depth indicated in the table of dimensions. Since the mounting screw hole for the table is penetrated, the bed or retainer will be pushed by the screw if the fixing thread depth is too deep, and the running accuracy and life may be adversely affected.

2 Operating temperature

As synthetic resin components are not used for the BWU series, it may be used at high temperature. However, when it exceeds 100°C, contact IKO.

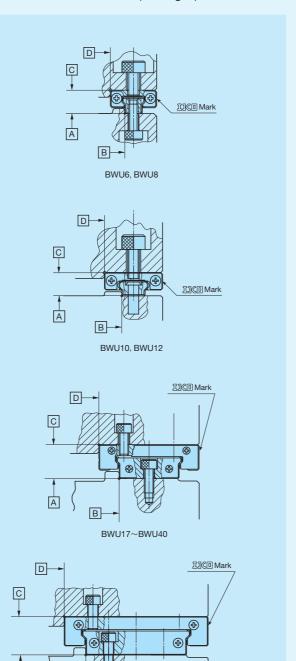
3 Maximum velocity

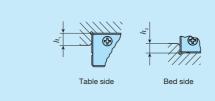
Operating velocity should not exceed 30 m/min during operation.

Precaution for Mounting.

Reference mounting surface

Reference mounting surface of the BWU series is the opposite side of the IKI mark. (See Fig. 1)




Fig. 1 Reference mounting surface and mounting examples

BWU60

2 Typical mounting structure

As indicated in Fig.1, reference mounting surfaces B and D, and mounting surfaces A and C are precisely ground. Therefore, by machining the reference mounting surface of the mating member and the mounting surface, such as machine or device, to high accuracy and mounting them properly, stable linear motion with high accuracy is realized. For the opposite corner of the mating reference mounting, it is recommended to have relieved fillet as indicated in the illustration in Table 5. The value indicated in Table 5 is recommended for the shoulder height on the mating side.

Table 5 Shoulder height

unit: mm

Width	Shoulder height of the table side	Shoulder height of the bed side
	h_1	h_2
6	1	0.5
8	1.2	0.8
10	1.2	0.8
12	1.5	0.8
17	2.5	1.2
25	2.5	1.5
30	3	2
40	3	2.5
60	4	2.5

3 When lateral load is the primary load

As indicated in Fig. 2, firmly fix the sides of the table and bed with pressure plates.

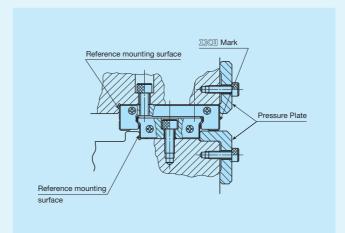


Fig. 2 Mounting example when lateral load is the primary load

4 Tightening torque for fixing screw

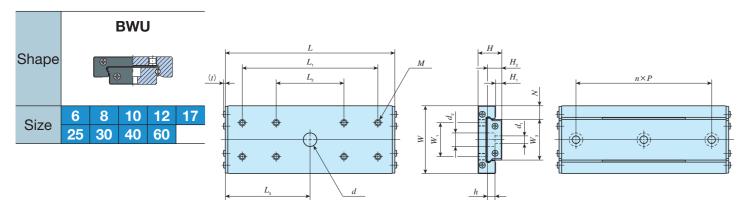

Typical tightening torque for mounting of the BWU series to the steel mating member material is indicated in Table 6. If the mating member material is cast iron or aluminum alloy, reduce the tightening torque depending on the strength characteristics of the mating member material.


Table 6 Tightening torque for fixing screw

Bolt size	Tightening torque N·m
M1 ×0.25	0.04
M1.4×0.3	0.10
M1.6×0.35	0.15
M2 ×0.4	0.31
M3 ×0.5	1.1
M4 ×0.7	2.5

Remark: The tightening torque is calculated based on property division A2-70 of stainless steel hexagon socket head bolt.

IX High Rigidity Precision Linear Slide Unit

BWU60-100, BWU60-120

	Mass (Ref.)		١		dimens	sions				Tab	le mour	nting dime	ensions			Bed mounting dimensions mm						ions			Basic dynamic load rating		Allowable load	Static moment rating	
Identification number	g	W	H	H ₁	N N		Maximum stroke	$W_{_1}$	L_1	L_2	M	Maximum fixing thread	W_{2}		L_3	d	t	W_3	H_2	$W_{_4}$	n	P	d_1	d_2	h	C	C_0	F	T_{0}
							length					depth														N	N	N	N·m
BWU 6- 10	1.0	-				10	3		4	_											1	4	M1.0			154	181	60.2	0.21
BWU 6- 20	2.2	6	3.2	0.7	2	20	11	_	10		M1.4	0.8	_	-	-	-	0.46	2	1.9	-		_	hrough	_	_	252	361	120	0.42
BWU 6- 30	3.3					30	16		18	10											2					355	587	196	0.68
BWU 8- 10	1.7	-				10	4		5.5	_											1	5	M1.6			203	212	70.6	0.36
BWU 8- 20	3.5	8	4	1	2.5	20	15	_	10		M2	0.8	_	-	-	-	0.45	3	2.6	-			hrough	_	_	292	353	118	0.60
BWU 8- 30	5.2					30	19		21	10											2					442	635	212	1.1
BWU 10- 15(1)	3.2	-				15	8		6.5	_				7	7.5	3					1	5				249	282	94.1	0.62
BWU 10- 25(1)	5.7	10	4	1	3	25	16	_	13		M2	0.8	_		_		0.45	4	2.6	-		10	1.8	2.8	0.75	370	494	165	1.1
BWU 10- 40(1)	9.0					40	22		26	13				20	0	3					3					572	917	306	2.0
BWU 12- 20(2)	6.2					20	16		8	_				-	-	_					1	7.5				292	353	118	1.1
BWU 12- 30(2)	9.5	12	4.5	1	3	30	20	_	15		M2	1.1	_				0.45	6	2.8	-	_	15	2.4	4	1.5	442	635	212	2.0
BWU 12- 45(2)	14.1					45	30		31	15						4.5					2					603	988	329	3.2
BWU 17- 20	15.0					20	14		10	-				10	_	4.5					1	7.5				588	635	212	2.5
BWU 17- 30	23.7	17	8	1.5	5	30	19	12	20	-	M2	3	_		-	_	8.0	7	5	-	_	15	2.4	4.2	2.3	874	1 110	370	4.4
BWU 17- 45	35.4					45	29		30					22	2.5	4.5					2					1 200	1 750	582	6.9
BWU 25- 30	40.6	-				30	23		15	<u> </u>											,	15				783	953	318	7.1
BWU 25- 45	62.5	25	9	1.8	5.5	45	28	10	25	_	МЗ	2.5	_	-	-	-	0.9	14	5.2	-	1		3.5	6	3.2	1 200	1 750	582	13.0
BWU 25- 60	84.3	-				60	38				-											30				1 490	2 380	794	17.7
BWU 25- 75	104					75	48		55	25				37	7.5	6.5					2					1 760	3 020	1 010	22.5
BWU 30- 30	64.4	-				30	23		15	-											_	15				1 270	1 410	470	13.4
BWU 30- 45	99.1	- 00	10	0.4		45	29		25	_	N40			-	-	-	4.0	40	7.5		ı		0.5	0.5	4.5	1 920	2 540	847	24.1
BWU 30- 60	133	30	12	3.4	6	60	35	14			M3	3	_		7.5		1.0	18	7.5	_		30	3.5	6.5	4.5	2 490	3 670	1 220	34.9
BWU 30- 75	165	-				75	47		55	25				-	7.5	6.5					2					2 880	4 520	1 510	42.9
BWU 30- 90	199					90	59		20					45	بى ا							20				3 250	5 360	1 790	50.9
BWU 40- 40	136					40	31		20												4	20				2 040	2 210	735	27.8
BWU 40- 60	209	40	14	3.5	8	60	39 47	20	40	_	M4	4	_		-		1.0	24	8.5	-		40	4.5	8	4.5	3 100	3 970	1 320	50.0
BWU 40- 80	281					80			00	40					0	0					0	40				4 010	5 730	1 910	72.2
BWU 40-100	346					100	63		80	40				50	0	8					2					4 640	7 060	2 350	88.9
BWU 60- 60	363	-				60	34		40	_			_	-	-	-					1					4 740	5 690	1 900	124
BWU 60- 80	487	60	16	3.6	9	80	47	36	- 00		M4	4					1.1	42	10	23		40	4.5	8	4.5	5 930	7 820	2 610	171
BWU 60-100	597	-		3.0		100	56		80	40			23	50		8					2					7 020	9 960	3 320	217
BWU 60-120	723					120	68		100					60	U											8 050	12 100	4 030	264

Notes (¹) Bed mounting bolts (cross-recessed pan head screw for precision equipment M1.6×5) are appended.

⁽²⁾ Bed mounting bolts (cross-recessed pan head screw for precision equipment M2×4) are appended.

Points

Light weight and compact

Weight is saved by precise forming of stainless steel plate to U shape and integration of the way and mounting surface, and downsizing was realized by functional allocation of parts.

Stable performance

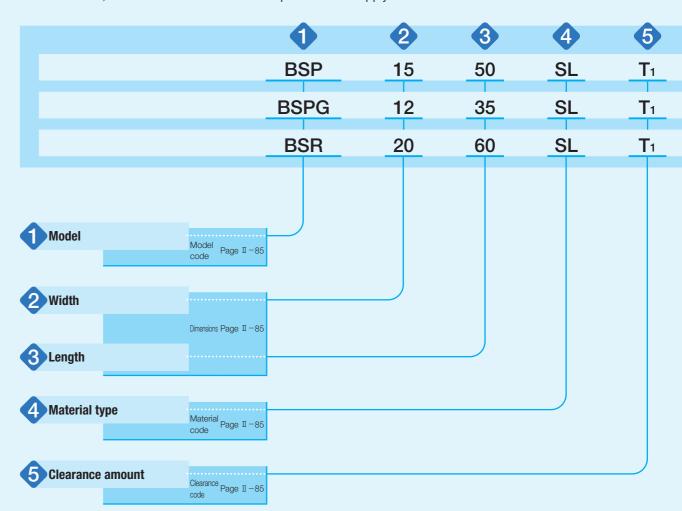
With simple two-row four-point contact structure, motion accuracy with stable load carrying capacity and high motion accuracy can be achieved for load in every direction.

Quiet and smooth operations

The excellent retaining and guiding mechanism of the ball and precisely-finished raceway realizes very quiet and smooth operations. High response characteristics and positioning accuracy are obtained for micro-feeding operation as well.

High safety

Since non-combustible or self-extinguishing materials are used for all synthetic resin components, they may be used for wide range of applications including household office automation equipment that requires incombustibility.


Stainless steel selections for excellent corrosion resistance

Stainless steel highly resistant to corrosion is used for all steel components, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

Identification Number and Specification

Example of an identification number

The specifications of BSP, BSPG and BSR are indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a material code, and a clearance code for each specification to apply.

Identification Number and Specification

Model

Precision Linear Slide Unit

Limited linear motion type : BSP
Built-in rack & pinion type : BSPG
Endless linear motion type : BSR

For applicable models and width, see Table 1.

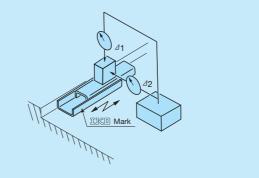
Width

7, 10, 12, 15, 20, 25

Indicate the width in mm.
For applicable models and width, see Table 1.

Table 1 Models and width

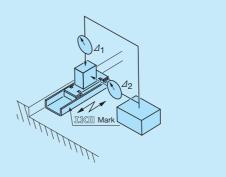
Oleana	Madal	Ob an advisit a		Width							
Shape	Model	Characteristics	7	10	12	15	20	25			
Limited linear motion type	BSP	Retainer made of special synthetic resin is used to prevent interference noise from contact of balls. This type performs very smooth and light limited linear motion without stick-slip.	0	0	-	0	0	0			
Built-in rack & pinion type	BSPG	A pinion gear assembled in the retainer integrated with two-row ball raceway is engaged with the racks fixed to the table and bed to prevent creeping of retainer position. Like BSP, this type also performs smooth linear motion.	_	_	0	0	0	0			
Endless linear motion type	BSR	The ball circulation structure made of special synthetic resin realizes quiet and smooth endless linear motion according to the length of a track rail.	_	_	0	0	0	0			


3 Length			Indicate the length in mm.
4 Material type	Stainless steel made	: SL	Stainless steel (SL) can be specified only for the material type.
5 Clearance amount	Standard T ₁ Clearance	: No symbol : T ₁	For details of clearance amount, see Table 2. Typically, apply the standard clearance for use in small frictional resistance and the clearance adjusted to the clearance code T ₁ for applications requiring high linear motion accuracy.

unit: μm

	-
Type and code	Clearance of raceways
Standard (no symbol)	0~+4
T ₁	-4 ~ 0

Accuracy


Table 3 Running accuracy for BSP and BSPG

unit: μ

			unit. μ i
Stroke	length	Parallelism at the	Parallelism at the
m	m	bed center against	bed center against
		the table mounting	the table reference
Over	Incl.	surface	mounting surface
		Δ ₁	$\Delta_{_2}$
-	18	3	6
18	30	4	8
30	50	5	10
50	80	6	12

Table 4 Running accuracy for BSR

unit: μ m

Stroke m	length	Parallelism at the slide unit center	Parallelism at the slide unit center
Over	Incl.	against the track rail mounting surface	against the track rail reference mounting surface Δ_2
		- 1	-
_	18	3	6
18	30	4	8
30	50	5	10
50	80	6	12

Lubrication

Grease is not pre-packed in the BSP and BSR, so please perform adequate lubrication as needed.

Upon delivery, anti-rust oil is applied. Therefore, perform cleaning with clean solution before mounting, apply high-quality lubrication oil or grease to the raceway, and conduct shakedown before use.

The BSPG is packaged with special grease applied to the raceway surface and rack and pinion, using a vaporizable rust-prevention film rather than rust prevention oil. In general applications, keep cleanliness and mount it as it is.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Precaution for Use

Applied load

For use with stable and high running accuracy, it is recommended to use applied load around 20% or lower of the basic static load rating.

2 Handling

When high running accuracy is required for BSP and BSPG, set the load point at the center of the table (or bed) and use with sufficient stroke length.

For the BSP, the retainer may be deviated from the right position due to offset load or irregular and high-velocity motion, etc. Fully stroke it once in certain operating time or certain number of reciprocating motion to correct the retainer position. If it is difficult to correct the retainer position, use BSPG or BSR.

Since BSP, BSPG and BSR have no built-in mechanical stopper to regulate linear motion in the event of collision, install a stopper mechanism in proximity if risk of overstroke exists.

3 Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. However, when it exceeds 100°C, contact IKO.


4 Maximum velocity

Operating velocity should not exceed 30 m/min during operation.

Precaution for Mounting

Reference mounting surface

Reference mounting surface is the opposite side of the $\operatorname{TR}(\mathbb{R})$ mark.

2 Typical mounting structure

The mating surface to mount BSP, BSPG and BSR should be finished to high accuracy as much as possible so as not to affect the motion accuracy.

For the opposite corner of the mating reference mounting, it is recommended to have relieved fillet as indicated in Fig. 1, but you may also mount it based on R_1 dimension indicated in Table 5. The value indicated in Table 5 is recommended for the shoulder height on the mating side.

3 Mounting

The fixing thread depth of fixing screws must not exceed the maximum fixing thread depth indicated in the dimension table.

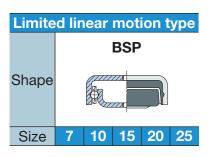
When mounting BSP and BSPG, use female screws of the table and bed, or insert screws smaller by one size to the female screws. However, note that BSP 715 SL through BSP 740 SL cannot be mounted from the inside of the table and bed.

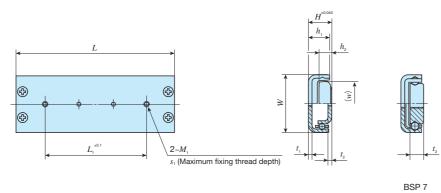
When mounting the track rail of BSR, use female screws of the track rail or insert screws smaller by one size to the female screws. However, note that BSR 1530 SL through BSR 2040 SL cannot be mounted from the inside of the track rail. In addition, when BSR 1230 SL through BSR 1260 SL are to be mounted from the inside of the track rail, contact IKO.

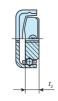
Table 5 Shoulder height and corner radius of the reference mounting surface

unit: mm

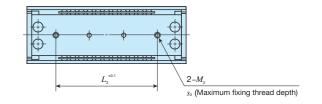
ı	dentification numbe	r	Shoulder height h_3	Corner radius R_1 (maximum)
-	_	BSR 12	2.5	
BSP 7	-	-	3	
BSP 10	-	_	4	
-	BSPG 12	_	4	0.5
BSP 15	BSPG 15	BSR 15	5	
BSP 20	BSPG 20	BSR 20	6	
BSP 25	BSPG 25	BSR 25	U	

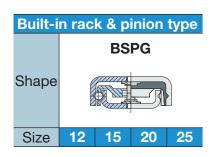

4 Tightening torque for fixing screw


If the fixing force of BSP, BSPG and BSR toward the mating surface is too strong, performance and accuracy are adversely affected. Although it depends on material, rigidity and finishing condition of the mating surface, it is generally recommended to use smaller tightening torque for fixing screws and use value comparable to Table 6. In addition, use a stopper measure such as adhesive agent if fixing screw may be loosened by vibration, etc.

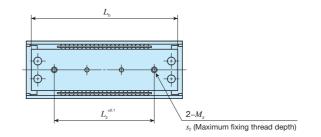

Table 6 Tightening torque for fixing screw

Bolt size	Tightening torque N · m
M2 × 0.4	0.065
M2.3 × 0.4	0.10
M2.6 × 0.45	0.15
M3 × 0.5	0.24


IKU Precision Linear Slide

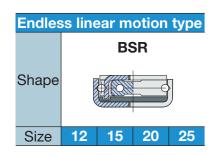

BSP 10

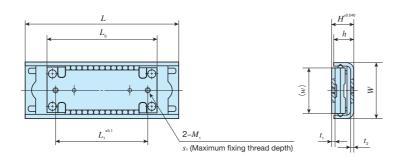


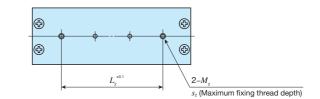

	Mass (Ref.)			dimensior mm	is	Table mounting dimensions mm							В	ed mountir n	Basic dynamic load rating	Basic static load rating			
Identification number	g	W	Н	L	Maximum stroke length	$L_{_1}$	<i>M</i> ₁	$\begin{array}{c} \text{Maximum fixing} \\ \text{thread depth} \\ s_{\scriptscriptstyle 1} \end{array}$		$h_{_1}$	t ₁	w	L_2	M_2	$\begin{array}{c} \text{Maximum fixing} \\ \text{thread depth} \\ s_2 \end{array}$	h_2	t_2	C N	$C_{ extsf{o}}$ N
BSP 7 15 SL(1)	2.1			15	- 9	5							5					93.3	42.0
BSP 7 20 SL(1)	2.8	7	4	20	9	10	M2	1		3.4	0.9	3.6	10	M2	2	_	2	134	70.0
BSP 7 30 SL(1)	4.2	1	4	30	18	20	IVIZ	'		3.4	0.9	3.0	20	IVIZ	2	_	2	170	98.0
BSP 7 40 SL(1)	5.6			40	23	30							30					203	126
BSP 10 25 SL	6.2			25	15	15							15					340	156
BSP 10 35 SL	8.8	10	6	35	26	25	M2.6	1.5		5.8	1.1	6.2	25	M2.6	2.7	3.7	2.7	398	194
BSP 10 45 SL	11.3			45	38	35							35					453	233
BSP 15 30 SL	11			30	22	14							14					395	194
BSP 15 40 SL	14.7	15	8	40	24	24	MO	2.5		7	1.0	11.2	24	M3	3	4.5	1.2	550	311
BSP 15 50 SL	18.4	15	0	50	32	32 34 M3 40 40	IVIS	2.5		_ ′	1.2	11.2	34	IVIO	3	4.5		644	389
BSP 15 60 SL	22.1			60	40							40					732	467	
BSP 20 40 SL	23.7			40	22	24							24					726	386
BSP 20 50 SL	29.7			50	28	34							34					866	496
BSP 20 60 SL	35.7	20	10	60	34	40	M3	3.2		9	1.4	16	40	M3	3.5	6.2	1.4	998	606
BSP 20 70 SL	41.7			70	40	45							45					1 120	717
BSP 20 80 SL	47.6			80	53	50							50					1 180	772
BSP 25 50 SL	37.6			50	26	34							34					866	496
BSP 25 60 SL	45.3			60	32	40							40					998	606
BSP 25 70 SL	52.9	25	10	70	40	45	5 M3	3.5		9	1.6	20.5	45	M3	3	5.7	1.6	1 120	717
BSP 25 80 SL	60.5			80	51	50					1.5	20.0	50					1 180	772
BSP 25 100 SL	75.8			100	63	60						60	1				1 410	992	

Note (1) BSP 715 SL through BSP 740 SL cannot be mounted from the inside of the table and bed.

IKU Precision Linear Slide







Mass Nominal dimensions mm					s		Tabl	e mounting d	dimensions				Bed mo	Basic dynamic load rating	Basic static load rating				
Identification number	g	W	Н	L	Maximum stroke length	$L_{_{1}}$	M ₁	Maximum fixing thread depth	$h_{\scriptscriptstyle 1}$	t ₁	$L_{\scriptscriptstyle m b}$	w	L_{2}	M_{2}	Maximum fixing thread depth	h_2	t ₂	C N	$C_{ extsf{o}}$ N
BSPG 12 25 SL	6.5			25	14	15					23.6		15					244	131
BSPG 12 35 SL	9.0	12	6	35	24	24	M2.6	2	5.2	1.2	33.6	7.6	24	M2.6	2	3	1	299	175
BSPG 12 45 SL	11.6			45	34	34					43.6		34					350	219
BSPG 15 40 SL	15.8			40	24	24					37		24					550	311
BSPG 15 50 SL	19.6	15	8	50	32	34	M3	2.5	7	1.2	47	9.6	34	M3	3	4.5	1.2	644	389
BSPG 15 60 SL	23.5			60	40	40					57		40					732	467
BSPG 20 40 SL	25.5			40	22	24					37		24					726	386
BSPG 20 50 SL	31.8			50	28	34					47		34					866	496
BSPG 20 60 SL	38.1	20	10	60	34	40	M3	3.2	9	1.4	57	13.8	40	МЗ	3.5	6.2	1.4	998	606
BSPG 20 70 SL	44.4			70	40	45					67		45					1 120	717
BSPG 20 80 SL	50.5			80	47	50					77		50					1 240	827
BSPG 25 50 SL	40.3			50	26	34					46		34					866	496
BSPG 25 60 SL	48.3			60	32	40					56		40					998	606
BSPG 25 70 SL	56.2	25	10	70	38	45	M3	3.5	9	1.6	66	18.4	45	МЗ	3	5.7	1.6	1 120	717
BSPG 25 80 SL	64.1			80	44	50	5	0.0			76		50					1 240	827
BSPG 25 100 SL	80.0			100	56	60					96		60					1 460	1 050

IK Precision Linear Slide

	Mass Nominal dimensions mm							Slide Uni	Mour	Mounting dimensions				Track rail	mounting di	Basic dynamic load rating	Basic static load rating		
Identification number	g	W	Н	L	Maximum stroke length	w	$L_{\scriptscriptstyle 0}$	$L_{_1}$	А		Maximum fixing thread depth s_1	<i>t</i> ₁	L_{2}	M_{2}	Maximum fixing thread depth s_2	h	t ₂	C N	$C_{ extsf{o}}$ N
BSR 12 30 SL(1)	5.8			30	13								15						
BSR 12 40 SL(1)	7.0	12	4.5	40	23	9.8	21.5	15		M2	1.0	0.0	20	M2	1.6	4	0.0	214	140
BSR 12 50 SL(1)	8.2	12	4.5	50	33	9.0	21.5	15	IV	VIZ	1.3	0.9	34	IVI∠	1.6	4	0.9	214	140
BSR 12 60 SL(1)	9.3			60	43								40						
BSR 15 30 SL(2)	12.6			30	10								14						
BSR 15 40 SL	14.8	15	8	40	20	12.2	30	24		M3	1.8	1	24	M3	3	7	1.2	543	311
BSR 15 50 SL	17.1		0	50	30		30	24	IV	VIO	1.0	'	34	IVIO		,	1.2	343	311
BSR 15 60 SL	19.3			60	40								40						
BSR 20 40 SL(2)	27.6			40	12								24						
BSR 20 50 SL	31.1			50	22								34						
BSR 20 60 SL	34.6	20	10	60	32	16.8	40	32	N	M3	2.2	1.4	40	M3	3.5	9	1.4	921	551
BSR 20 70 SL	38.1			70	42								45						
BSR 20 80 SL	41.6			80	52								50						
BSR 25 70 SL	53.8			70	33								45						
BSR 25 80 SL	58.4	25	10 80	43	21.4	50	42	N	M3 2.4	2.4 1.6	1.6	50	M3	3.5	9	1.6	1 170	772	
BSR 25 100 SL	67.4			100	63								60						

Notes (1) When BSR 1230 SL through BSR 1260 SL are to be mounted from the inside of the track rail, contact IKO.
(2) BSR 1530 SL and BSR 2040 SL cannot be mounted from the inside of the track rail.

Linear Slide Unit Clearance adjustment screw Ball Retainer Way

Points

Light weight linear motion guide unit

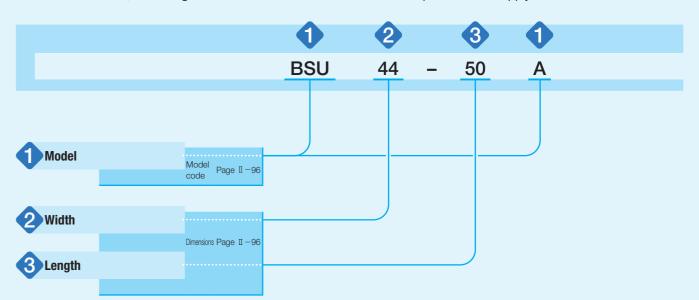
Since the product uses aluminum alloy for table and bed, it is a light weight and compact limited linear motion guide unit.

Smooth operations

Since the ball is guided by the retainer made of synthetic resin and rotates on high accuracy round shank way, it can obtain a light and smooth motion.

Easy mounting

Since the product is properly preloaded, it can easily gain a stable linear motion only by fixing it against precisely grounded mounting surface with bolts.


Excellent corrosion resistance

The ball and way are mode of stainless steel and the surface of table and bed have anodic oxidization coating, allowing high corrosion resistance.

Identification Number and Specification

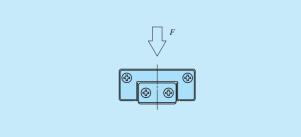
Example of an identification number

The specification of BSU···A series is indicated by the identification number. Indicate the identification number, consisting of a model code and dimensions for each specification to apply.

Identification Number and Specification

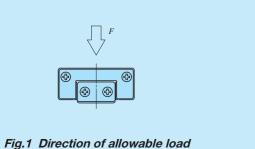
Model	Linear Slide Unit	: BSU···A
	For applicable models, width	and length, see Table 1.
2 Width	44, 66	Indicate the table width in mm. For applicable models, width and length, see Table 1.
3 Length		Indicate the length in mm. For applicable models, width and length, see Table 1.

Table 1 Width and length of BSU···A series


u	n	Ιt	: 1	m

Shana	Model	Width	Length							
Shape	Model	vvidti	50	80	100	125	150			
	BSU···A	44	0	0	0	_	_			
	БЭОА	66	_	_	0	0	0			

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch


Allowable Load

Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small.

Grease is not pre-packed in the BSU···A series, so perform adequate lubrication as needed.

Perform cleaning with clean solution before mounting and apply high-quality lubrication oil or grease to the raceway before use.

Accuracy

Running accuracy

Parallelism at the table center against the bed mounting surface (see Fig. 2): 10 μ m / 10 mm

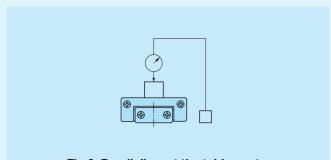
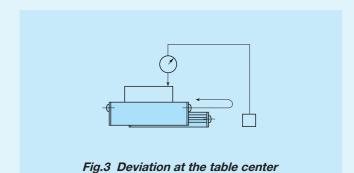



Fig.2 Parallelism at the table center

2 Allowance of deviation at the table center

Deviation at the table center after stroking the table and returning to the same position (see Fig. 3.): 1.5 μ m

Precaution for Use

• Handling

When high running accuracy is required, set the load point at the center of the table (or bed) and use with sufficient

For the BSU···A series, the retainer may be deviated from the right position due to offset load or irregular and highvelocity motion, etc. Fully stroke it once in certain operating time or certain number of reciprocating motion to correct the retainer position.

Since BSU...A series have small allowable load F, handling requires special care. Especially when clearance adjustment is performed, too much tightening of clearance adjustment screw will create impression on ball or way, which can adversely affect the friction, noise and vibration of the bearing. When performing clearance adjustment, gradually rotate the clearance adjustment screw by checking the motion status and paying special attention.

Operating temperature

The table and bed of BSU···A series are made of aluminum alloy, and the clearance may change by the operating temperature. When using in the temperature outside the normal temperature, contact IKO. When using in wide operating temperature range, it is recommended to use IKO High Rigidity Precision Linear Slide Unit.

3 Maximum velocity

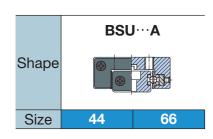
Operating velocity should not exceed 30 m/min during operation.

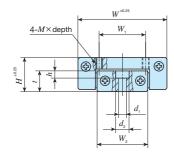
Precaution for Mounting

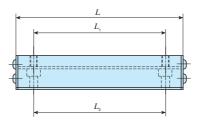
Mounting

The fixing thread depth of fixing screws must not exceed the maximum fixing thread depth indicated in the dimension table. Since the fixing screw hole for the table is penetrated, the bed or retainer will be pushed by the screw if the fixing thread depth is too deep, and the running accuracy and life may be adversely affected.

2 Tightening torque for fixing screw


Typical tightening torque for mounting of the BSU···A series to the steel mating member material is indicated in Table 2. If the mating member material is cast iron or aluminum alloy, reduce the tightening torque depending on the strength characteristics of the mating member material.


Table 2 Tightening torque for fixing screw


Bolt size	Tightening torque N · m
M5×0.8	5.0

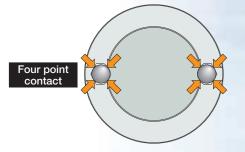
Remark: The tightening torque is calculated based on property division A2-70 of stainless steel hexagon socket head bolt.

IK Linear Slide Unit

Identification number	Mass (Ref.)		Nominal d				ing dimensions					g dimensions nm			Allowable load		
	g	Н	W	L	Stroke length	$W_{_1}$	L_1	M imesdepth	W_{2}	t	L_2	d_1	d_2	h	N		
BSU 44- 50 A	110		44	50	25		35		M5×7 21.8				35				98.1
BSU 44- 80 A	175	20		80	50	20	65	M5×7		12.3	65	5.3	10	5.3	177		
BSU 44-100 A	220			100	75	85	85				85				235		
BSU 66-100 A	420			100	50		75				75				265		
BSU 66-125 A	525	25	66	125	75	35	100	M5×8	37	16	100	5.3	10	5.3	392		
BSU 66-150 A	625			150	100		125				125				510		

Linear Ball Spline

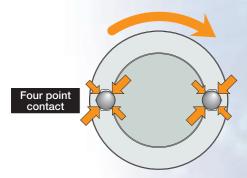
C-Lube Linear Ball Spline MAG Linear Ball Spline G


II - 101

Excellent features of compact linear structure by four-points contact in

IKO Linear Ball Spline is a linear motion rolling guide in which an external cylinder makes linear motion along the spline shaft. Since the structure lets a ball to rotate on the spline track groove, it can receive not only the radial load but also rotating torque. Therefore it best fits the structure in which torque transmission and linear motion take place in parallel.

High rigidity despite of compact size


The structure places large diameter balls in two rows and has four-point contact with the track, allowing greater rigidity and compact design.

For the load from all directions it gives a good balance and high rigidity!

Allows high accuracy and accurate positioning

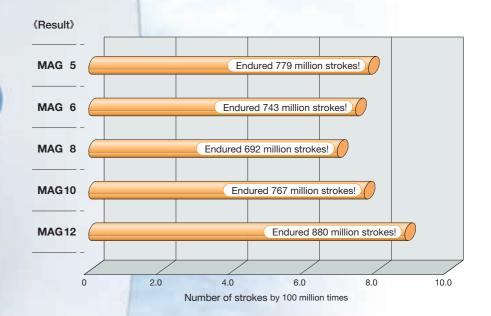

Preload removes the clearance along the rotation direction, allowing accurate positioning along the rotation direction.

No play along the rotation direction!

Low frictional resistance and smooth motion

The optimum design based on the thorough analysis of ball recirculating route realized low frictional resistance and smooth linear motion durable for high speed operations.

ball spline realized by a simple two-row raceways


Both high speed durability performance and maintenance free performance are achieved

C-lube Linear Ball Spline MAG realizes a long term maintenance free using the built-in lubrication parts C-Lube for ball recirculation way in external cylinder. Since the lubrication oil inside C-Lube maintains the lubrication performance for a long time, it reduces the annoying lubricating management works and also allows total system cost saving by reducing the oil supply structures.

Durability test assuming the chip mounter

《Test conditions》								
Lubrication conditions	Only lubrication of with no pre-p	oil inside C-lube, acked grease						
Test method	Vibration test machine							
	Posture	Vertical						
0	Maximum velocity	860 mm/s						
Operation	Acceleration	10 G						
condition	Number of cycle	18.2 Hz						
	Stroke length	15 mm						

Endured total strokes of 200 million times without a problem, only by lubrication oil inside C-Lube, for vertical shaft and super high tact operation!

Realized the maintenance free of 10 years of use equivalent to 10 years, in the test condition assuming the use for general chip mounters!!

Achieved maintenance free of more than 600 million total strokes in this severe operation conditions!!

II - 103

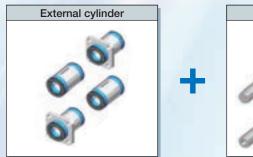
Free combination is enabled for model/accuracy/preload!!

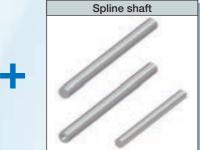
Extreme interchangeable system

Interchangeable specification

Interchangeable specification allows for external cylinder and spline shaft dimensions to be strictly managed based on unique advanced processing technology, resulting in an unparalleled level of interchangeability.

This allows external cylinders and spline shafts to be handled independently and selected in any combination, allowing you to order just what you need, when you need it, and in the quantity you require.

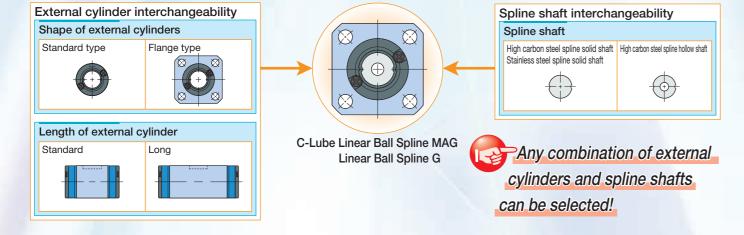

Requirements of;


- Wish to improve the rigidity and life of machines
- Wish to improve the accuracy of machines
- Wish to replace the external cylinder immediately
- There are not enough external cylinders
- Wish to replace the spline shaft immediately
- The length of spline shaft is not sufficient
- Wish to store only the external cylinders in stock for emergency

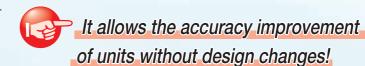
Interchangeable specification realizes;

- Wish to prepare for a sudden design change
- Wish to select freely the combination of high accuracy and preload
- Independent handling of external cylinders and spline shafts
- Free and independent combination of external cylinders and spline shafts
- Compactness independent storing of external cylinders and spline shafts

Select the products as many as you wish.



External cylinder interchangeability


A wide variety of models with different sectional shape and length are provided, for free replacement on the same spline shaft.

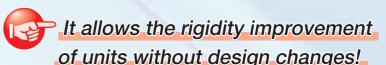
Accuracy interchangeability

The simple structure of four-contact in two-row raceway yields small manufacturing errors or accuracy measurement errors, allowing the maintenance of each raceway in the high dimensions accuracy.

Two accuracy classes of ordinary and high level are provided, to support even high traveling accuracy purposes.

Preload interchangeability

The simple structure is leveraged to allow dimensions to be managed with high accuracy, for preloaded external cylinders that are interchangeable.


It supports the applications requiring the rigidity of one higher rank.

External cylinder Spline shaft

Maintenance free is achieved only by replacing the external cylinder!

 $\Pi-105$

Points

Compact size

Uses a unique ball retaining mechanism without using a retainer, allowing a small external cylinder outside diameter against shaft diameter.

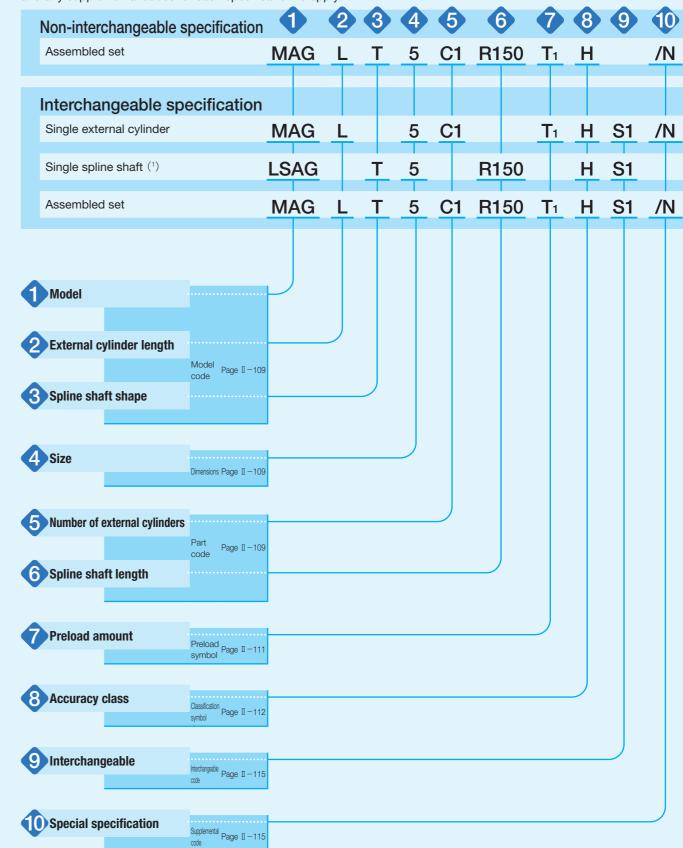
Wide range of variations for your needs

The external cylinder shape can be selected from two types, the standard (cylindrical shape) type and the flange type, and there are two types with different length of external cylinder

Also for spline shaft, the solid shaft and the hollow shaft that allows piping/wiring/air removal are prepared for your selection to meet the requirements of mechanical/unit specifications.

Extremely small size realized by simple structure Stainless steel shaft with high corrosion

The minimum size LSAG2 realizes an unparalleled small size of 2 mm shaft diameter and 6 mm external cylinder's outside diameter.


resistance

The spline shafts made of stainless steel are highly corrosion-resistant. They are suitable where rust prevention oil is not preferred, such as in a cleanroom environment.

Identification Number and Specification

Example of an identification number

The specifications of MAG and LSAG series are indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a preload symbol, a classification symbol, an interchangeable code, and any supplemental codes for each specification to apply.

Note (1) Indicate "LSAG" (solid shaft) or "LSAGT" (hollow shaft) for the model code of the single spline shaft regardless of the series and the combination of external cylinder models.

Identification Number and Specification — Model · External Cylinder Length ·

	•								
1 Model	C-Lube Linear Ball Spli (MAG series)	ne MAG	Standard type Flange type	: MAG : MAGF					
	Linear Ball Spline G (1) (LSAG series)		Standard type Flange type	: LSAG : LSAGF					
	For applicable models and sizes, see Table 1. Indicate "LSAG" (solid shaft) or "LSAGT" (hollow shaft) for the model code of the single spline shaft regardless of the series and the combination of external cylinder models.								
	Note (1) This model has	no built-in C-L	ube.						
External cylinder length	Standard Long	: No symbol : L	For applicable models and	d sizes, see Table 1.					
3 Spline shaft shape	Solid shaft Hollow shaft	: No symbol : T	For applicable models and	d sizes, see Table 1.					
4 Size	2, 3, 4, 5, 6, 8, 10, 12, 1 20, 25, 30	15	For applicable models and	d sizes, see Table 1.					
Number of external cylinders		: C O	For an assembled set, ind cylinders assembled on a external cylinder, only "C1	,					
			external cylinder, only "C	i is specilieu.					

Spline Shaft Shape \cdot Size \cdot Number of External Cylinders \cdot Spline Shaft Length -

Table 1 Models and sizes of MAG and LSAG series

	External cylinder								Si	ze					
Shape	length		Model	2	3	4	5	6	8	10	12	15	20	25	30
	Standard	М	AG	_	-	0	0	0	0	0	0	-	_	-	_
Standard type Solid shaft			LSAG	0	0	0	0	0	0	0	0	0	0	0	0
	Long	М	AGL	_	_	0	0	0	0	_	_	_	_	-	-
			LSAGL	_	-	-	0	0	0	0	0	0	0	0	0
Standard type Hollow shaft	Standard	М	AGT	_	_	0	0	0	0	0	0	_	_	_	-
			LSAGT	_	-	0	0	0	0	0	0	_	_	_	_
	Long	М	AGLT	_	-	0	0	0	0	_	_	_	_	_	_
ı			LSAGLT	_	-	-	0	0	0	0	0	_	_	_	_
Flange type Solid shaft	Standard	М	AGF	_	_	ı	0	0	0	0	0	ı	ı	ı	_
			LSAGF	0	0	0	0	0	0	0	0	0	0	0	0
	Long		LSAGFL	-	_	ı	0	0	0	0	0	0	0	0	0
Flange type Hollow shaft	Standard	М	AGFT	-	-	-	0	0	0	0	0	-	_	-	_
			LSAGFT	_	-	0	0	0	0	0	0	_	_	_	_
	Long		LSAGFLT	_	_	-	0	0	0	0	0	_	_	_	_

Remark: For the models indicated in _____, the interchangeable specification is available.

Clearance Standard Light preload

: To Specify this item for an assembled set or a single

: No symbol external cylinder.

: T₁ For details of the preload amount, see Table 2. For applicable preload types, see Table 3.

Table 2 Preload amount

Preload type	Preload symbol	Preload amount N	Operational conditions
Clearance	To	0(1)	· Very light motion
Standard	(No symbol)	0(2)	· Light and precise motion
Light preload	T ₁	0.02 C ₀	Almost no vibrations Load is evenly balanced Light and precise motion

Notes (1) There is zero or subtle clearance.

(2) Indicates zero or minimal amount of preload.

Remark: C_0 indicates the basic static load rating.

Table 3 Application of preload

	Preload	Preload type (preload symbol)							
Size	Clearance (T ₀)	Standard (No symbol)	Light preload (T ₁)						
2	0	0	_						
3	0	0	_						
4	0	0	-						
5	_	0	0						
6	_	0	0						
8	_	0	0						
10	_	0	0						
12	_	0	0						
15	_	0	O						
20	_	0	0						
25	_	0	0						
30	_	0	0						

Remark: The mark indicates that interchangeable specifications products are available.

-Accuracy Class-

8 Accuracy class

Ordinary High Precision

: H

: P

: No symbol For interchangeable specification products, assemble an external cylinder and a spline shaft of the same

accuracy class.

For applicable accuracy class, see Table 4.

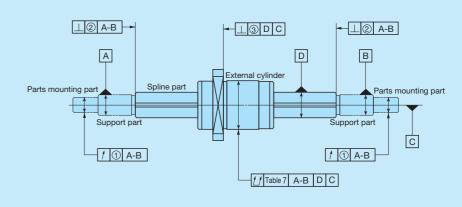

For details of accuracy class, see Table 5, Table 6, and

Table 4 Application of accuracy class

	Class	classification sy	/mbol)
Size	Ordinary (No symbol)	High (H)	Precision (P)
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
8	0	0	0
10	0	0	0
12	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0

Remark: The mark indicates that interchangeable specifications products are available.

Table 5 Tolerance of each part

unit: μ m

	Re	elative to axi	al line of sup	3 Perpendicularity of mounting						
Size	① Radial runout of periphery of parts mounting part (1)				endicularity of end face (1)	of spline	surface of flange with respect to axial line of spline shaft (2)			
	Ordinary	High	Precision	Ordinary	High	Precision	Ordinary	High	Precision	
	(No symbol)	(H)	(P)	(No symbol)	(H)	(P)	(No symbol)	(H)	(P)	
2	33	14	8	22	9	6	27	11	8	
3	33	14	8	22	9	6	27	11	8	
4	33	14	8	22	9	6	27	11	8	
5	33	14	8	22	9	6	27	11	8	
6	33	14	8	22	9	6	27	11	8	
8	33	14	8	22	9	6	27	11	8	
10	41	17	10	22	9	6	33	13	9	
12	41	17	10	22	9	6	33	13	9	
15	46	19	12	27	11	8	33	13	9	
20	46	19	12	27	11	8	33	13	9	
25	53	22	13	33	13	9	39	16	11	
30	53	22	13	33	13	9	39	16	11	

Notes (1) The values are for the processed shaft ends.

(2) Applicable to the flange type.

 Table 6 Twist of grooves with respect to effective length of the spline part

unit: µn

			unit. Am
Accuracy class	Ordinary	High	Precision
	(No symbol)	(H)	(P)
Allowable value	33	13	6

Remark: The values can be applied to 100 mm of the effective length of the spline at any position.

Table 7 Allowable values of total radial runout of spline shaft axial line

unit: μm

Table / Allo	able 1 Allowable values of total radial fullout of spline shart axial line									unit. μ m	
	Size and					Size					
	accuracy class	2, 3, 4, 5, 6, 8				10, 12			15, 20		
Overall length of spline shall		Ordinary (No symbol)	High (H)	Precision (P)	Ordinary (No symbol)	High (H)	Precision (P)	Ordinary (No symbol)	High (H)	Precision (P)	
Over	Incl.	(NO Symbol)	(11)	(F)	(NO Syllibol)	(11)	(F)	(NO Syllibol)	(11)	(F)	
_	200	72	46	26	59	36	20	56	34	18	
200	315	133	89	57	83	54	32	71	45	25	
315	400	185	126	82	103	68	41	83	53	31	
400	500	236	163	108	123	82	51	95	62	38	
500	630	_	_	_	151	102	65	112	75	46	
630	800	_	_	_	190	130	85	137	92	58	
800	1 000	_	_	_	_	_	_	170	115	75	
1 000	1 250	_	_	_	_	_	_	_	_	_	
	Size and		Size								
	accuracy		25, 30								

	Size and	Size						
	accuracy class	25, 30						
Overall lengt of spline sha	h ft mm	Ordinary (No symbol)	High (H)	Precision (P)				
Over	Incl.							
_	200	53	32	18				
200	315	58	39	21				
315	400	70	44	25				
400	500	78	50	29				
500	630	88	57	34				
630	800	103	68	42				
800	1 000	124	83	52				
1 000	1 250	151	102	65				

-Accuracy Class-

Table 8 Measuring methods of accuracy

	g methods of accuracy	Westerfor store to the last
Item	Measuring method	Illustration of measuring method
(1) Radial runout of periphery of parts mounting part with respect to axial line of supporting part of spline shaft (see Table 5 ①)	While supporting the spline shaft at its support part, place the dial gage probes on the outer peripheral faces of the parts mounting part and measure the deflection from one rotation of the spline shaft.	
(1) Perpendicularity of spline part end face with respect to axial line of supporting part of spline shaft (See Table 5 ②)	While supporting the spline shaft at its support part and one spline shaft end, place the dial gage probes on the spline end faces and obtain perpendicularity by measuring the deflection from one rotation of the spline shaft.	
Perpendicularity of mounting surface of flange with respect to axial line of spline shaft (see Table 5 ③)	While supporting the spline shaft at both centers and the outer peripheral faces of the spline shaft near the external cylinder and fixing the external cylinder on the spline shaft, place the dial gage probe on the flange mounting surface and obtain perpendicularity by measuring the deflection from one rotation of the spline shaft.	Jig fixture
Twist of grooves with respect to effective length of the spline part (see Table 6)	While supporting the spline shaft fixed, apply a unidirectional torsion moment load to the external cylinder (or measuring unit), place the dial gage probe vertically to the spline shaft on the side face of the sunk key attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of the spline shaft. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder.	Sunk key 100 Reference block for dial gage probe movement
Total radial runout of axial line of spline shaft (see Table 7)	While supporting the spline shaft at its support part or at both centers, place a dial gage probe on the outer peripheral face of the external cylinder (or measuring unit) and measure the deflection from one rotation of the spline shaft at several positions in the axial direction to obtain the maximum value.	

Note (1) The accuracy are for the processed shaft ends.

Table 9.1 Application of special specifications (Interchangeable specification, single external cylinder, and assembled set)

Special specification	Supplemental		Size										
Special specification	code	2	3	4	5	6	8	10	12	15	20	25	30
No seal	/N	_	_	_	0	0	0	0	0	0	0	0	0
Oil hole (1)	/OH	_	_	_	0	0	0	0	0	0	0	0	0
With C-Lube plate (1)	/Q	_	_	_	0	0	0	0	0	_	_	_	_

Note (1) Applicable to LSAG series.

Table 9.2 Application of special specifications (Non-interchangeable specification)

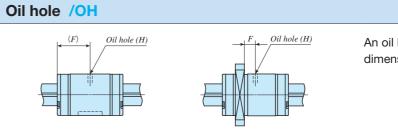
Special appointment	Supplemental	Size											
Special specification	code	2	3	4	5	6	8	10	12	15	20	25	30
Stainless steel end plate (1)	/BS	_	_	_	0	0	0	0	0	0	_	_	_
No seal	/N	_	_	_	0	0	0	0	0	0	0	0	0
Oil hole (1)	/OH	_	0	0	0	0	0	0	0	0	0	0	0
With C-Lube plate (1)	/Q	_	_	_	0	0	0	0	0	_	_	_	_
Special environment seal (1)	/RE	_	_	_	0	0	0	0	0	0	_	_	_
Stainless steel spline shaft(2)	/S	_	_	_	0	0	0	0	0	0	0	0	0
Specified grease (1)	/Y	_	_	_	0	0	0	0	0	0	_	_	_

Notes (1) Applicable to LSAG series.

(2) Applicable to solid shaft.

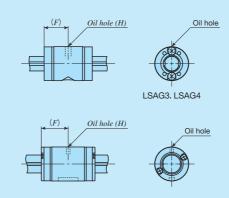
Table 10 Combination of supplemental codes

N						
ОН	•	0				
Q	•	0	0			
RE	•	_	•	•		
S	•	•	•	•		
Υ	•	•	•	_	•	
	BS	N	ОН	Q	RE	S

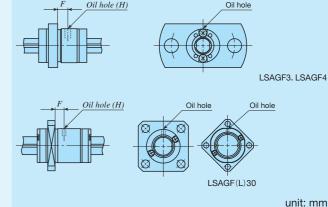

Remarks 1. The combination of "-" shown in the table is not available.

- 2. Contact IKO for the combination of the interchangeable specification marked with •.
- 3. When using multiple types for combination, please indicate by arranging the symbols in alphabetical order.

—Special Specification —


Stainless steel end plate /BS The standard synthetic resin end plates are replaced with stainless steel end plates. The total length of the external cylinder remains unchanged.

An oil hole is created on the external cylinder. For dimensions, see Table 11.1 and Table 11.2.

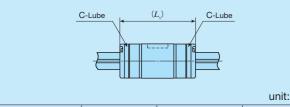

Table 11.1 Location and diameter of oil hole on a standard type external cylinder (Supplemental code /OH)

unit: mm Identification Identification Н Hnumber number LSAG 3 5 1.2 LSAG 4 6 LSAGL 5 LSAG 5 9 13 1.5 LSAGL 6 LSAG 6 10.5 15 1.5 LSAGL 8 LSAG 8 12.5 18.5 LSAGL10 LSAG10 23.5 15 LSAG12 17.5 2 LSAGL12 27 2 32.5 LSAG15 20 LSAGL15 LSAG20 25 LSAGL20 35.5 42 LSAG25 30 3 LSAGL25 3 LSAG30 35 LSAGL30 49

Remark: A typical identification number is indicated, but is applied to all LSAG series standard type models of the same size.

Table 11.2 Location and diameter of oil hole on a flange type external cylinder (Supplemental code /OH)

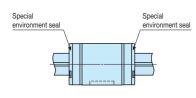
				un	it: mm
Identification number	F	Н	Identification number	F	Н
LSAGF 3	2.1	1.2	_	_	_
LSAGF 4	2.8		_	_	_
LSAGF 5	2.0	1.5	LSAGFL 5	5.8	
LSAGF 6	3.5	1.5	LSAGFL 6	8	1.5
LSAGF 8	3.5		LSAGFL 8	9.5	
LSAGF10	5		LSAGFL10	13.3	
LSAGF12	7.5	2	LSAGFL12	17	2
LSAGF15	9		LSAGFL15	21.5	
LSAGF20	11		LSAGFL20	21.5	
LSAGF25	13	3	LSAGFL25	25	3
LSAGF30	14		LSAGFL30	28	


Remark: A typical identification number is indicated, but is applied to all LSAG series flange type models of the same size.

With C-Lube plate /Q

The C-Lube impregnated with lubrication oil is attached inside the seal of the external cylinder, so that the interval for reapplicating lubricant can be extended. For the total length of the external cylinder with C-Lube plate, see Table 12.

Table 12 Dimension of external cylinder with C-Lube plate (Supplemental code /Q)



			unit: mm
Identification number	$L_{\scriptscriptstyle 1}$	Identification number	$L_{\scriptscriptstyle 1}$
LSAG 5	24	LSAGL 5	32
LSAG 6	27	LSAGL 6	36
LSAG 8	33	LSAGL 8	45
LSAG10	38	LSAGL10	55
LSAG12	43	LSAGL12	62

Remarks 1. The dimensions of the external cylinder with C-Lube at both ends are indicated.

A typical identification number is indicated, but is applied to all LSAG series models of the same size.

Special environment seal /RE

The standard seals are replaced with seals for special environment that can be used at high temperatures. The total length of the external cylinder remains unchanged.

Stainless steel spline shaft /S

The material of the solid spline shaft is changed to stainless steel. The load rating will change to a value obtained by multiplying the load rating for the steel spline shaft by a factor of 0.8.

Specified grease /YCG /YCL /YAF /YBR /YNG

The type of pre-packed grease can be changed by the supplemental code.

① /YCG Low Dust-Generation Grease for Clean Environment CG2 is pre-packed.

② /YCL Low Dust-Generation Grease for Clean Environment CGL is pre-packed.

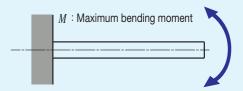
③ /YAF Anti-Fretting Corrosion Grease AF2 is pre-packed.

4 /YBR MOLYCOTE BR2 Plus Grease [Dow Corning] is pre-packed.

5 /YNG No grease is pre-packed.

Spline shaft strength

IKO Linear Ball Spline spline shafts can receive loads in all directions. Therefore, attention must be paid to spline shaft strength.


For bending load

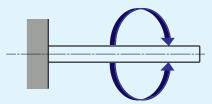
For bending load on the spline shaft, select a shaft diameter that fulfills the conditions in formula (1).

M: Maximum bending moment acting on spline shaft N·mm

 σ : Spline shaft allowable bending stress 98 N/mm²

Z: Section modulus of spline shaft mm³ (See Table 13)

For torsion load


For torsion load on the spline shaft, select a shaft diameter that fulfills the conditions in formula (2).

 $T=\tau a\times Z_p$ (2)

T : Maximum torsion moment N⋅mm

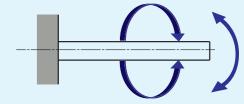
 τa : Spline shaft allowable torsion stress 49 N/mm²

Zp: Polar section modulus of spline shaft mm³ (See Table 13)

For simultaneous torsion and bending load

For simultaneous torsion and bending load on the spline shaft, calculate the shaft diameters from the equivalent bending moment formula (3) and the equivalent torsion moment formula (4) and use the larger value.

Equivalent bending moment Me


$$Me = \frac{1}{2}(M + \sqrt{M^2 + T^2})$$

 $Me = \sigma \times Z$

Equivalent torsion moment Te

$$Te = \sqrt{M^2 + T^2}$$

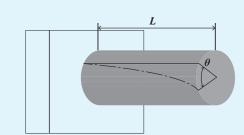
$$Te = \tau_a \times Z_p$$

T: Maximum torsion moment

Stiffness of spline shaft

The torsion angle of the spline shaft caused by torsion moment must not exceed 0.25° per 1 meter.

$$\theta = \frac{T \times L}{G \times Ip} \times \frac{360}{2\pi}$$


$$0.25^{\circ} \ge \frac{1000}{L} \theta$$

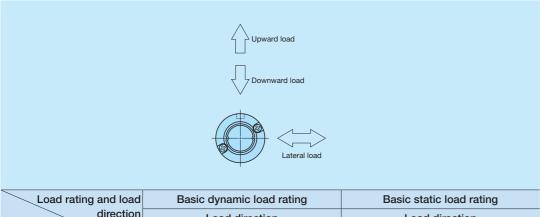
 θ : Torsion angle

L : Spline shaft length mm

G: Shear Modulus 7.9×10⁴ N/mm²

Ip : Polar moment of inertia of section area of spline shaft mm⁴ (See Table 13)

Spline shaft sectional characteristics

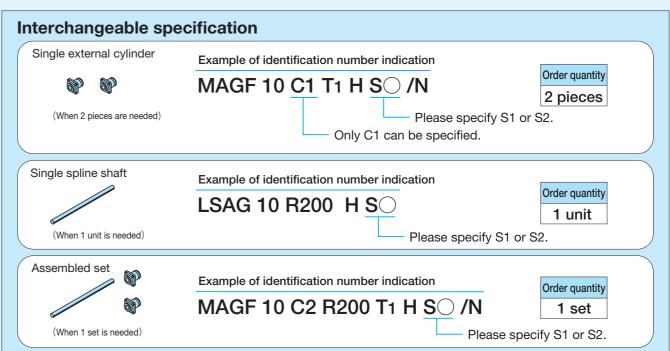

Table 13 Spline shaft sectional characteristics

Size	Moment of inertia of sectional area mm ⁴		Section modulus : Z mm³		section area of	nt of inertia of spline shaft: I_p m ⁴	Polar section modulus : Z_P mm ³		
	Solid shaft	Hollow shaft	Solid shaft	Hollow shaft	Solid shaft	Hollow shaft	Solid shaft	Hollow shaft	
2	0.60	_	0.65	_	1.4	_	1.4	_	
3	3.6	_	2.5	_	7.5	_	5.0	_	
4	12	12	6.0	6.0	24	24	12	12	
5	29	28	12	11	59	58	24	23	
6	61	60	21	20	120	120	41	41	
8	190	190	49	47	390	380	98	96	
10	470	460	95	93	960	940	190	190	
12	990	920	170	160	2 010	1 880	330	310	
15	1 580	_	240	_	3 260	_	480	_	
20	5 100	_	570	_	10 500	_	1 150	_	
25	12 000	_	1 080	_	24 800	_	2 200	_	
30	25 300	_	1 890	_	52 200	_	3 840	_	

Load Direction and Load Rating

The MAG and LSAG series must be used with their load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 14.

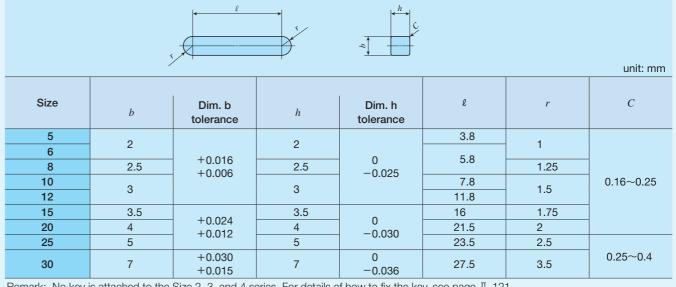
Table 14 Load ratings corrected for load direction



ĺ	Load rating and load		dynamic load	rating	Basic static load rating			
	direction	ı	oad direction	ו	Load direction			
	Size	Downward	Upward	Lateral	Downward	Upward	Lateral	
	2~12	С	С	1.47 <i>C</i>	C_{0}	$C_{\scriptscriptstyle 0}$	1.73 <i>C</i> ₀	
	15~30	С	С	1.13 <i>C</i>	C_{0}	$C_{\scriptscriptstyle 0}$	1.19 <i>C</i> ₀	

Identification number and quantity for ordering

To order an assembled set of MAG and LSAG series, please specify the number of sets based on the number of spline shafts. For single external cylinder or single spline shaft of the interchangeable specification, please specify the number of units.



Dimensions of Attached Key

The MAG and LSAG series standard types have keys shown in Table 15 attached.

Table 15 Dimensions and tolerance of attached key

Remark: No key is attached to the Size 2, 3, and 4 series. For details of how to fix the key, see page II-121.

Lubrication

Lithium-soap base grease with extreme-pressure additive (Alvania EP Grease 2 [Shell Lubricants Japan K.K.]) is prepacked in MAG and LSAG series. Additionally, MAG series has C-Lube placed in the recirculation part of balls, so that the interval for reapplicating lubricant can be extended and maintenance works such as grease job can be reduced significantly.

Perform re-greasing as below.

(1) Size 2, 3, and 4 series

Specify either direct application of grease to the spline shaft raceway surface or oil hole specification (/OH). Note that the oil hole specification (/OH) is not available for the Size 2 series

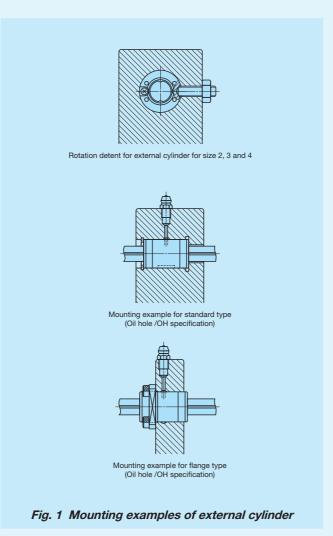
(2) Size 5 and higher series

Apply grease directly to the spline shaft raceway surface or the rolling elements. You may also specify the oil hole specification (/OH).

Dust Protection

The external cylinders of MAG and LSAG series are equipped with special rubber seals as standard for dust protection. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the spline shaft, it is recommended to attach a protective cover to the linear motion mechanism. The Size 2, 3, and 4 series are not provided with seals. If the Size 3 and 4 series with seals is needed, contact IKO.

Precaution for Use —


Fitting of external cylinder

Generally, transition fit (J7) is used for fitting between the external cylinder and the housing bore. When high accuracy and high rigidity are not required, clearance fit (H7) can also be used.

2 Typical mounting structure

Mounting examples of the external cylinder are shown in Fig. 1.

The rotation detent for external cylinders of the Size 2, 3, and 4 series should be mounted using the countersink provided on the external cylinder. Use screws M1.2 to M1.6 for Size 2, M1.6 to M2 for Size 3, and M2 to M2.5 for Size 4. At this point, be careful not to deform the external cylinder with screws.

3 Multiple external cylinders used in close proximity

When using multiple external cylinders in close proximity, greater load may be applied than the calculated value depending on the accuracy of the mounting surfaces and reference mounting surfaces of the machine or device. In such cases, allowance for greater applied load than the calculated value should be made.

If two or more external cylinders are assembled on a spline shaft and two or more keys are used to fix the rotational direction of the external cylinder, the keyway position of the external cylinders are aligned before delivery. Please contact IKO.

4 Additional machining of spline shaft end

- When machining the outside surface of the spline shaft, make sure that the maximum diameter of the end machining part does not exceed d_i in the dimension table. If the machined outside surface exceeds d_i , it will leave a track groove.
- · Perform annealing if additional machining will be performed.
- · Shaft guide shapes for spline shafts can be prepared upon request. Please contact IKO for further information.

6 Operating temperature

MAG Series contains C-Lube. The operating temperature should not exceed 80°C. The maximum operating temperature for LSAG series is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

When specifying LSAG series special specification with C-Lube plate (supplemental code /Q), utilize it below 80°C.

6 Arrangement of flange type (non-interchangeable specification) external cylinder

Table 16 shows arrangements of multiple flange type external cylinders in non-interchangeable specification. Arrangements that are not in Table 16 can be prepared upon request. Contact IKO for further information.

Table 16 Arrangement of flange type (Noninterchangeable specification) external cylinder

Number of external cylinders		Arrangement of external cylinders
1		-
2		
3		
4		
5		
6		
	external cylinders 1 2 3 4 5	Number of external cylinders 1 2 3 4 5

• When mounting multiple assembled sets at the same time

For interchangeable specification products, assemble an external cylinder and a spline shaft with the same interchangeable code ("S1" or "S2").

For non-interchangeable specification products, use the same combination of external cylinder and spline shaft upon delivery.

3 Assembly of external cylinder on spline shaft

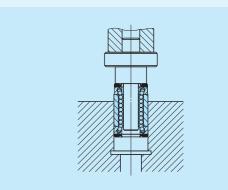
When assembling the external cylinder on the spline shaft, correctly fit the grooves of the external cylinder and the spline shaft and move the external cylinder softly in parallel direction. Rough handling may result in damaging of seals or dropping of steel balls.

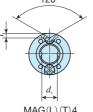
The non-interchangeable specification products are already adjusted so as to provide the best accuracy when the $\mathbb{L}\mathbb{R}$ marks of the external cylinder and the spline shaft face the same direction (see Fig. 2). Be careful not to change the assembly direction.

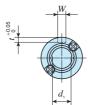
Fig. 2 Assembly direction of external cylinder

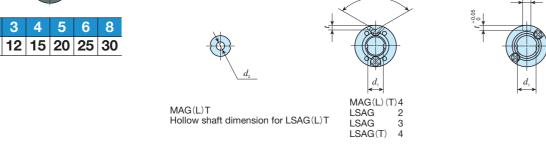
Mounting of external cylinder

When press-fitting the external cylinder to the housing, assemble them correctly by using a press and a suitable jig fixture. (See Fig. 3.)

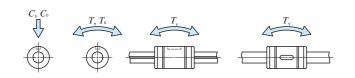


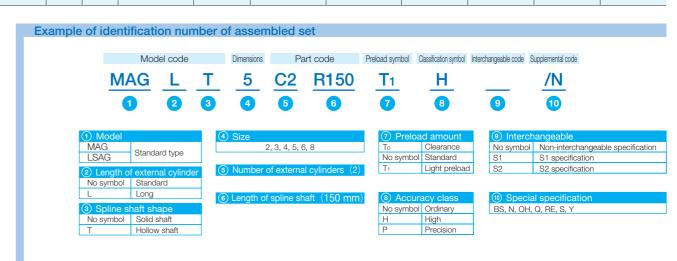

Fig. 3 Press-fitting of external cylinder


Standard type MAG · LSAG

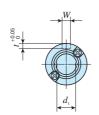

Shape

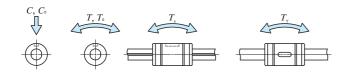
10 12 15 20 25 30

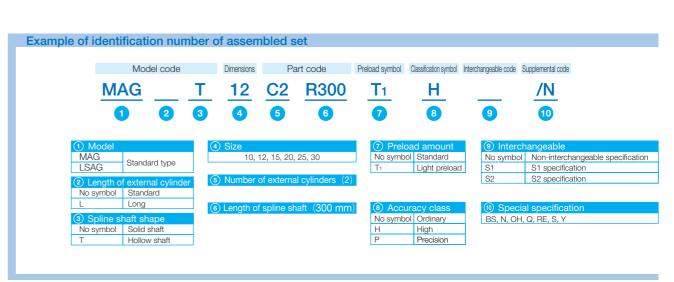




Identification number		geable	Ma	ass (Ref.)	External cylinder dimensions and tolerances mm								Spline shaft dimensions and tolerances mm							Basic static load rating (4)	Dynamic torque rating (4)	Static torque rating (4) Static moment rating (4)			
MAG series	LSAG series (No C-Lube)	Interchar	External cylinder		D	Dim. D tolerance	L_1	L_2	W	Dim. W tolerance	t	l	d		Dim. d erance	d ₁ (2)	d_2	L(3)	Maximum length	C N	C ₀ N	T N·m	$T_{_{0}}$ N \cdot m	T_{x} $N\cdotm$	$T_{\scriptscriptstyle m Y}$ N \cdot m
_	LSAG 2(1)	-	1.0	2.3	6	-0.008	8.5	4.7	_	_	0.7	_	2	0 -0.0	0.010	1.2	_	50 100	100	222	237	0.28	0.30	0.22 1.4	0.39 2.4
_	LSAG 3(1)	-	2.1	5.4	7	-0.009	10	5.9	_	_	8.0	_	3	0 -0.0	0.010	2.2	_	100 150	150	251	285	0.45	0.51	0.31 1.9	0.53 3.3
MAG 4(1)	LSAG 4(1)	 -	2.5	9.6			15 12	7.9			1						_		200	303	380	0.70	0.87	0.52 3.80 0.52 2.9	0.53 3.3 0.90 6.50 0.90 5.0
MAGT 4(1)	LSAGT 4(1)	- -	2.5	8.2	8	0 -0.009	15 12	7.9	_	_		_	4	-0.0	0.012	3.2	1.5	100 150	150	303	360	0.70	0.67	0.52 3.80 0.52 2.9	0.90 6.50 0.90 5.0
MAGL 4(1)	_	-	4.4	9.6			21	13.9									-		200	441	665	1.00	1.50	1.50 8.60	2.60 15.0
MAGLT 4(1)	_	-	4.1	8.2			21	13.9									1.5		150	441	665	1.00	1.50	8.60	15.0
MAG 5	LSAG 5	0	4.8	14.9	10 0		18	9.4			1.2						_			587	641	1.8	1.9	1.0 7.9	1.8 13.6
MAGT 5	LSAGT 5	0	4.0	12.4		0	10	3.4	2	+0.014		6	5	0	0.012	4.2	2	100 150	200	367	041	1.0	1.5	7.9	13.6
MAGL 5 MAGLT 5	LSAGL 5	0	8.1	14.9 12.4		-0.009	26	16.9						-0.0	0.012	4.2	2	100 130		879	1 180	2.6	3.5	3.2 19.3	5.5 33.4
MAG 6	LSAG 6			19													_								
MAGT 6	LSAGT 6		8.9	16.5	-		21	12.4									2	-		711	855	2.5	3.0	1.7 11.7	3.0 20.3
MAGL 6	LSAGL 6			19	12	0 -0.011			2	+0.014	1.2	8	6	-0.0	0.012	5.2	_	150 200	300						
MAGLT 6	LSAGLT 6		14.5	16.5	-		30	21.4									2	-		1 030	1 500	3.6	5.2	5.0 27.6	8.6 47.8
MAG 8	LSAG 8	0		39													_		500					0.0	F.C.
MAGT 8	LSAGT 8	0	15.9	9 33	-	0	25	14.6		+0.014				0			3		400	1 190	1 330	5.5	6.2	3.3 22.0	5.6 38.1
MAGL 8	LSAGL 8	0		39	15	-0.011			2.5	0	1.5	8.5	8	-6.0	0.015	7	_	150 200 250	500					10.3	17.8
MAGLT 8	LSAGLT 8	0	26.5	33			37	26.6									3		400	1 800	2 470	8.4	11.5	10.3 56.3	17.8 97.5


- Notes (1) No seal is included.
 - (2) d, represents the maximum diameter for end machining. (Perform annealing if end machining will be performed.)
 - (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number.
 - (4) The direction of basic dynamic load rating (C), basic static load rating (C_0) , dynamic torque rating (T), static torque rating and static moment rating (T_0, T_x, T_y) are shown in the sketches below.
 - The upper values of T_x and T_y are for one external cylinder and the lower values are for two external cylinders inclose contact.

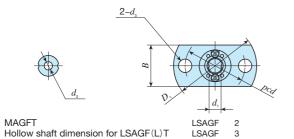


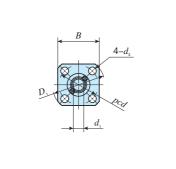


MAGT Hollow shaft dimension for LSAG(L)T

Identification	geable	flass (Ref.)	External cylinder dimensions and tolerances mm								Spline shaft dimensions and tolerances mm									Dynamic torque rating (3) Static torque rating (3) Static moment rating					
MAG series	LSAG series (No C-Lube)	e cylinde	Spline shaft (per 100 mm)	D	Dim. D tolerance	L_1	L_2	W	Dim. W tolerance	t	l l	d	Dim tolera	Dim. d lerance	$d_1(^1)$	d_2	L	,(2)	Maximum length	C N	<i>C</i> _o N	<i>T</i> N⋅m	T_{0} N·m	T_{x} $N\cdotm$	$T_{_{ m Y}}$ N \cdot m
MAG 10 MAGT 10	LSAG 10 LSAGT 10	31.5	60.5	- 10	0	30	18.2	0	+0.014	1.8	11	10	0	0	0.0	4	-	000	000	1 880	2 150	10.9	12.5	7.0 41.5	12.1 71.9
-	LSAGL 10 LSAGLT 10	56.5	60.5	19	-Ŏ.013	47	34.9	3	0	1.0	11	10	-ŏ.c	Ď.015	8.9	4	200 3	300	600	2 850	4 040	16.6	23.4	22.7 115	39.3 200
MAG 12 MAGT 12	LSAG 12 LSAGT 12	O 44	87.5 66	- 04	0	35 2	23	0	+0.014	1.8	45	12	0	0	10.0	- 6	000	000 400	000	2 180	2 690	14.8	18.3	10.6 59.1	18.3 102
-	LSAGL 12 LSAGLT 12	76.8	87.5	21 -0.013	0 -0.013	54	42	3	0		15	12	-ŏ.c	0.018	10.9	6	200 3	300 400	800	3 220	4 850	21.9	33.0	32.2 157	55.7 272
	LSAG 15	O 59.5	111	23	0 -0.013		27 52	3.5	+0.018	2	20	13.6	0 -0.0	0.018	11.6	_	200 3	300 400	1 000	4 180 6 400	6 070 11 500	31.3 48.0	45.6 86.5	27.8 152 94.0 449	33.2 181 112
_	LSAG 20	O 130	202	30	0 -0.016	50	33	4	+0.018	2.5	26	18.2	-0.0	0.021	15.7	-	300 4	400 500	1 000	6 600	9 040	66.0	90.4	48.6 288	112 535 58.0 343
-	LSAGL 20 LSAG 25	198220	310	37	0 -0.016		54 39.2		+0.018	3	29	22.6	0	n	19.4	<u>-</u> -		400 500 800	1 200	9 270 11 200	15 100 14 300	92.7 139	151 178	127 650 92.8 551	151 774 111 656
-	LSAGL 25	○ 336 ○ 430	310	31			63.2 43	5	0	3				Ď.021		_				15 400 15 400	23 200 19 400	193 231	290 292	229 1 190 147 874	273 1 420 176 1 040
-	LSAGL 30	0 634	450	45	-0.016		71	7 +	+0.022	4	35	27.2	-0.0	0.021	23.5	_	700 1	500 600 100	1 200	21 300	31 600	320	474	364 1 900	1 040 434 2 260

- Notes (1) d, represents the maximum diameter for end machining. (Perform annealing if end machining will be performed.)
 - (2) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number.
 - (3) The direction of basic dynamic load rating (C), basic static load rating (C_0), dynamic torque rating (T_0), static torque rating and static moment rating (T_0 , T_X , T_Y) are shown in the sketches below.
 - The upper values of T_x and T_y are for one external cylinder and the lower values are for two external cylinders inclose contact.

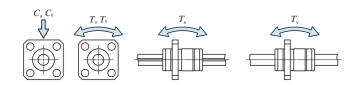


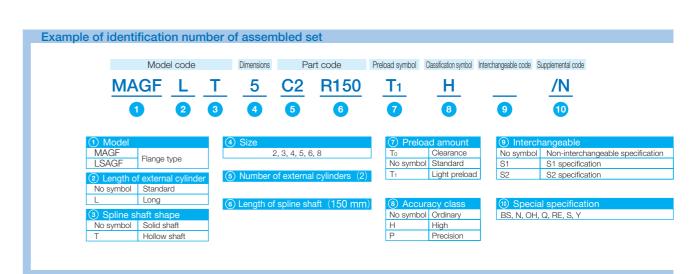

Flange type

MAGF · LSAGF

Shape

2 3 4 5 6 8 10 12 15 20 25 30

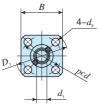


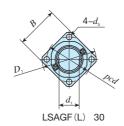

Identification number		geable	Ma	ass (Ref.)	External cylinder dimensions and tolerances mm								S				Spline s	haft d	imens m	ions and toleran	ices	Basic dynamic load rating (4)	Basic static load rating (4)	Dynamic torque rating (4)		Static moment rating(4)	
MAG series	LSAG series (No C-Lube)	Interchan	External cylinder	Spline shaft (per 100 mm)	D	Dim. D tolerance	$L_{\scriptscriptstyle 1}$	L_2	D_1	В	E	T	pcd	d_3		d	Dim. d tolerance	$d_1^{(2)}$	d_2	L(3)	Maximum length	C N	<i>C</i> ₀ N	T N⋅m	$T_{\scriptscriptstyle 0}$ N \cdot m	T_{X} N · m	T_{\scriptscriptstyleY} N \cdot m
_	LSAGF 2(1)	-	1.9	2.3	6	-0.008	8.5	4.7	15.5	8	3.4	1.5	11	2.4		2	-0.010	1.2	-	50 100	100	222	237	0.28	0.30	0.22 1.4	0.39 2.4
_	LSAGF 3(1)	-	3.7	5.4	7	-0.009	10	5.9	18	9	4	1.9	13	2.9		3	-0.010	2.2	-	100 150	150	251	285	0.45	0.51	0.31 1.9	0.53 3.3
_	LSAGF 4(1)	-	5.1	9.6	8		12	7.9	0.1	10	4.6	2.5	15	3.4		4		3.2	-	100 150	200	303	380	0.70	0.87	0.52 2.9	0.90 5.0
_	LSAGFT 4(1)	-	5.1	8.2	0	-0.009	12	7.9	21	10	4.0	2.5	15	3.4		4	-0.012	3.2	1.5	100 150	150	303	300	0.70	0.67	2.9	5.0
MAGF 5	LSAGF 5	0	8.9	14.9			18	9.4											_			587	641	1.8	1.9	1.0 7.9	1.8 13.6
MAGFT 5	LSAGFT 5	\circ	0.9	12.4	10	0 -0.009		3.4	23	18	7	2.7	17	3.4		5	0	4.2	2	100 150	200	367		1.0	1.0	7.9	13.6
_	LSAGFL 5		12	14.9	_	-0.009	26	16.9	23	10	,	2.1	''	3.4			-Ŏ.012	4.2	_	100 130	200	879	1 180	2.6	3.5	3. <u>2</u> 19.3	5.5 33.4
	LSAGFLT 5	0		12.4															2			0.0		0	0.0	19.3	33.4
MAGF 6	LSAGF 6	0	13.9	19			21	12.4											_			711	855	2.5	3.0	11.7 11.7	3.0 20.3
MAGFT 6	LSAGFT 6	0	10.0	16.5	12	0 -0.011			25	20	7	2.7	19	3.4		6	0 040	5.2	2	150 200	300		000	2.0	0.0	11.7	20.3
_	LSAGFL 6	0	19.5	19		-0.011	30	21.4	=0		'		10	0.1			-Ŏ.012	5.2	_			1 030	1 500	3.6	5.2	5.0 27.6	8.6 47.8
_	LSAGFLT 6	0	19.5	16.5				21.4											2			1 000	1 000	0.0	0.2	27.6	47.8
MAGF 8	LSAGF 8	0	23.5	39			25	14.6											_		500	1 190	1 330	5.5	6.2	3.3 22.0	5.6 38.1
MAGFT 8	LSAGFT 8	\circ	20.0	33	15	0 -0.011	23	14.0	20	22	0	2 0	22	3.4		8	0	7	3	150 200 250	400	1 190	1 330	5.5	0.2	22.0	38.1
-	LSAGFL 8	\circ	34.1	39	15	-0.011	37	26.6	28	22	9	3.8	22	3.4		°	-0.015	7	_	150 200 250	500	1 800	2 470	8.4	11.5	10.3 56.3	17.8 97.5
_	LSAGFLT 8		J4. I	33			37	20.0											3		400	1 800	2 470	0.4	11.5	56.3	97.5

Notes (1) No seal is included.

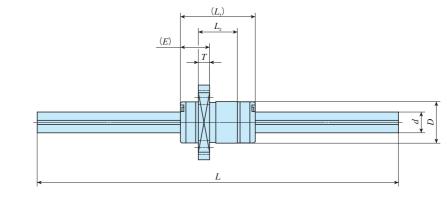
- (2) d_1 represents the maximum diameter for end machining. (Perform annealing if end machining will be performed.)
- (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number.
- (4) The direction of basic dynamic load rating (C), basic static load rating (C₀), dynamic torque rating (T), static torque rating and static moment rating (T₀, T_x, T_y) are shown in the sketches below.

The upper values of T_x and T_y are for one external cylinder and the lower values are for two external cylinders inclose contact.

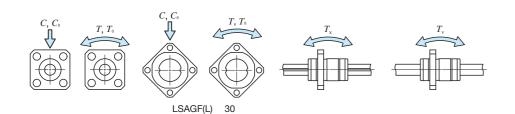


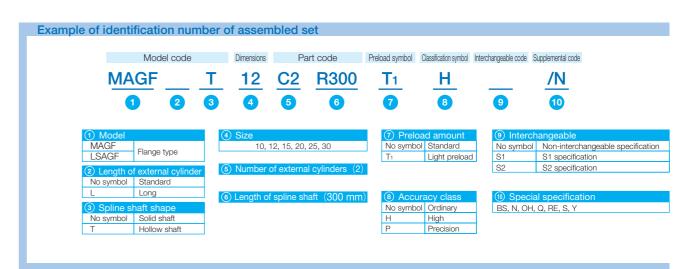


Flange type **MAGF** · LSAGF Shape 2 3 4 5 6 8 10 12 15 20 25 30



Hollow shaft dimension for LSAGF(L)T





Identification number		geable	Mass (Ref.)			External cylinder dimensions and tolerances mm									Spline shaft dimensions and tolerances mm							Basic dynamic load rating (3)	Basic static load rating (3)	Dynamic torque rating (3)	Static torque rating (3)	Static mome	nt rating(3)
MAG series	LSAG series (No C-Lube)	Interchan	external	Spline shaft (per 100 mm)	D	Dim. D tolerance	$L_{\scriptscriptstyle 1}$	L_2	D_1	В	E	T	pcd	d_3	d	Dim. d tolerance	$d_1^{(1)}$	d_2		L(2)	Maximum length	C N	C ₀ N	TN·m	$T_{\scriptscriptstyle 0}$ N \cdot m	T_{X} N·m	$T_{\scriptscriptstyle Y}$ N \cdot m
MAGF 10 MAGFT 10	LSAGF 10 LSAGFT 10	0	45	60.5 51	19	0	30	18.2	36	20	10	4.1	28	4.5	10	0	0.0	4	200	300	600	1 880	2 150	10.9	12.5	7.0 41.5	12.1 71.9
-	LSAGFL 10	0	70.1	60.5 51		-0.013	47	34.9	30	5 28 1	10	4.1	20	4.5	10	-Ŏ.015	8.9	4	200	300	000	2 850	4 040	16.6	23.4	22.7 115	39.3 200
MAGF 12 MAGFT 12	LSAGF 12 LSAGFT 12	0	59	87.5 66	21	0 -0.013	35	23	38	30	10	4	30	4.5	12	0	10.9	6	200	300 400	800	2 180	2 690	14.8	18.3	10.6 59.1	18.3 102
-	LSAGFL 12	0	91.8	87.5 66		-0.013	54	42	30	30	10	4		4.0	12	-0.018	10.9	6	200	300 400	800	3 220	4 850	21.9	33.0	32.2 157	55.7 272
-	LSAGF 15	0	77 128	111	23	0 -0.013	40 65	27 52	40	31	11	4.5	32	4.5	13.6	0-0.018	11.6	-	200	300 400	1 000	4 180 6 400	6 070 11 500	31.3 48.0	45.6 86.5	27.8 152 94.0 449	33.2 181 112 535
<u> </u>	LSAGF 20 LSAGFL 20	_	150 218	202	30	0-0.016	50 71	33 54	46	35	14	5.5	38	4.5	18.2	0 -0.021	15.7	-	300 600	400 500	1 000	6 600 9 270	9 040 15 100	66.0 92.7	90.4 151	48.6 288 127 650	58.0 343 151 774
-	LSAGF 25	_	255 371	310	37	0 -0.016	60 84	39.2 63.2	57	43	17	6.6	47	5.5	22.6	0 -0.021	19.4	-	300 600	400 500 800	1 200	11 200 15 400	14 300 23 200	139 193	178 290	92.8 551 229 1 190	111 656 273 1 420
_ 	LSAGFL 30	0	476 680	450	45	0-0.016	70	43	65	50	21	7.5	54	6.6	27.2	0-0.021	23.5	_ _	400 700 1	500 600 100	1 200	15 400 21 300	19 400 31 600	231	292 474	1 190 147 874 364 1 900	1 420 176 1 040 434 2 260

- Notes (1) d_1 represents the maximum diameter for end machining. (Perform annealing if end machining will be performed.)
 - (2) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number.
 - (3) The direction of basic dynamic load rating (C), basic static load rating (C_0), dynamic torque rating (T), static torque rating and static moment rating (T_0, T_x, T_y) are shown in the sketches below.

The upper values of T_x and T_y are for one external cylinder and the lower values are for two external cylinders inclose contact.

Ⅱ -130

Linear Bushing

Linear Bushing G
Linear Bushing
Miniature Linear Bushing

Ⅱ −131

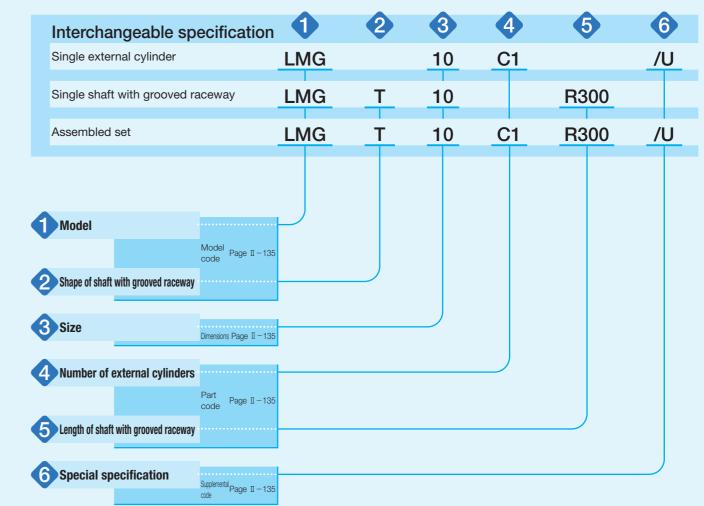
Points

High load capacity

The structure that balls in two rows have contact with the track groove of the shaft allows greater rigidity and larger load capacity.

Solid shaft and hollow shaft

There are two types of shafts with grooved raceway: a solid shaft and a hollow shaft. The hollow shaft is useful for piping, wiring, air removal, etc.


Dimensionally compatible with Linear Bushing LM

LMG series are dimensionally compatible with Linear Bushing LM to allow easy replacement.

Identification Number and Specification

Example of an identification number

The specification of LMG series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, and a supplemental code for each specification to apply.

Identification Number and Specification — Model · Shape of Shaft · Size · Number of External Cylinders · Length of Shaft · Special Specification—

Model	Linear Bushing G (LMG series) For applicable models a	and sizes, see	: LMG Table 1.
2 Shape of shaft with grooved raceway	Solid shaft Hollow shaft	: No symbol : T	For applicable models and sizes, see Table 1.
3 Size	6, 8, 10, 13, 16, 20		Indicate the shaft diameter in mm. For applicable models and sizes, see Table 1.

Table 1 Models and sizes of LMG series

Chana	Model	Size							
Shape	iviodei	6	8	10	13	16	20		
Solid shaft	LMG	0	0	0	0	0	0		
Hollow shaft	LMGT	0	0	0	0	0	0		

Remark: LMG series are all interchangeable specification. Non-interchangeable specification is not available.

4 Number of external cylinders		: C O	For an assembled set, indicates the number of external cylinders assembled on a shaft with grooved raceway. For a single external cylinder, only "C1" is specified.
5 Length of shaft with grooved raceway		: R O	Indicate the length of the shaft with grooved raceway in mm. For standard and maximum lengths, see the dimension table.
6 Special specification	With end seal /U		Applicable to all models and sizes.

Accuracy

Table 2 Twist of grooves with respect to effective length of track groove

	unit: μm
Allowable value	33
Described The control of the least the	400 mans of the office that he of the stands

Remark: The values can be applied to 100 mm of the effective length of the track groove part at any position.

Table 3 Allowable values of total radial runout of shaft with grooved raceway axial line

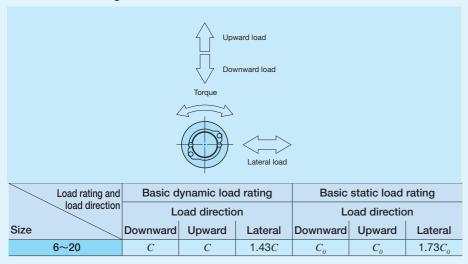
Table 3 Allowab	Table 3. Allowable values of total radial runout of shart with grooved raceway axial line. μ iii.									
· ·	shaft with grooved ay mm			Size						
Over	Incl.	6	8	10	13	16, 20				
-	200	142	142	129	129	126				
200	315	203	203	153	153	141				
315	400	_	255	173	173	153				
400	500	_	306	193	193	165				
500	630	_	_	221	221	182				
630	800	_	_	_	260	207				
800	1 000	_	_	_	_	240				

Remark: These are values when an internal clearance is 0 μ m.

Table 4 Measuring methods of accuracy

Table 4 Measuring methods of accuracy									
Item	Measuring method	Illustration of measuring method							
Twist of grooves with respect to effective length of track groove (See Table 2)	While supporting the shaft with grooved raceway, apply a unidirectional torsion moment load to the external cylinder, place the dial gage probe vertically to the shaft with grooved raceway on the side face of the measuring block of twist of grooves attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of track groove of the shaft with grooved raceway. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder.	Measuring block of twist of grooves 100 Reference block for dial gage probe movement							
Total radial runout of axial line of shaft with grooved raceway (See Table 3)	While supporting the shaft with grooved raceway at its supporting parts or at both centers, place a dial gage probe on the outer peripheral face of the external cylinder, and measure the deflection from one rotation of the shaft with grooved raceway at several positions in the axial direction to obtain the maximum value.								

Internal Clearance


The internal clearance of LMG series is approximately 10 $\,\mu{\rm m}.$

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Load Direction and Load Rating

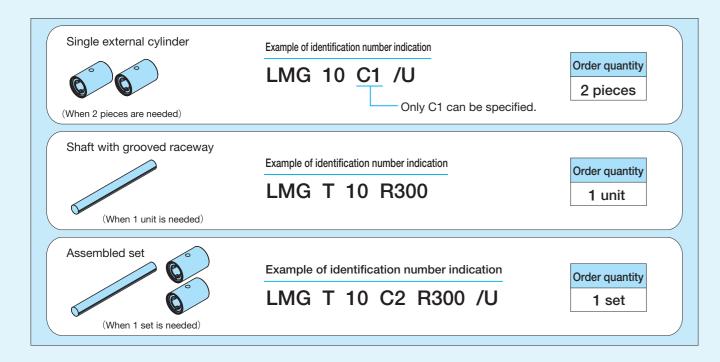

The LMG series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 4.

Table 4 Load ratings corrected for load direction

Identification number and quantity for ordering

To order an assembled set of LMG series, please specify the number of sets based on the number of shafts with grooved raceway. For external cylinders or single shafts with grooved raceway, please specify the number of units.

Moment of Inertia of Sectional Area and Section Coefficient of Shaft with Grooved Raceway

Table 5 Moment of inertia of sectional area and section coefficient of shaft with grooved raceway

9.00100	g.corea racenay									
Size		of sectional area m ⁴	Section coefficient mm ³							
	Solid shaft	Hollow shaft	Solid shaft	Hollow shaft						
6	60	59	20	20						
8	190	190	49	48						
10	470	460	95	93						
13	1 360	1 300	210	200						
16	3 130	2 930	390	360						
20	7 720	7 230	770	720						

Lubrication

Grease is not pre-packed in the LMG series, so please perform adequate lubrication as needed.

Both oil lubrication and grease lubrication are available in the LMG series. For grease lubrication, use of high-quality lithium-soap base grease is recommended.

Dust Protection

No dust protection seal is provided for LMG series. For applications in other than clean environment, cover the entire unit with a protective case, etc. to prevent harmful foreign substances such as dust and particles from outside from entering.

The special specification with end seals (supplemental code / U) has a dust protection effect. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the shaft with grooved raceway, it is recommended to attach a protective cover to the linear motion mechanism.

Precaution for Use

Fitting of external cylinder

Generally, clearance fit (H7) is recommended for fitting between the external cylinder and the housing bore. The transition fit (J7) may be applied for special use.

2 Typical mounting structure

Mounting examples of the external cylinder are shown in Fig. 1. The fixing thread depth of mounting screws for the external cylinder must not exceed the maximum fixing thread depth indicated in the dimension table. Since the screw hole for the external cylinder is penetrated, the shaft with grooved raceway will be pushed by the screw if the fixing thread depth is too deep, and the running accuracy and life will be adversely affected.

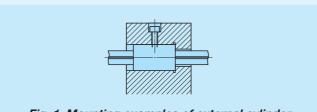


Fig. 1 Mounting examples of external cylinder

Multiple external cylinders used in close proximity

When using multiple external cylinders in close distance to the same housing, it is recommended to ensure that the distance between the external cylinders is three times as long as the length of the external cylinder. When using multiple external cylinders in closer distance, contact IKO.

4 Loaded condition with rotating torque

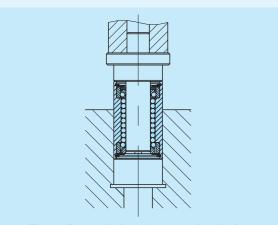
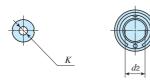
Use IKO Linear Ball Spline G under loaded conditions with a rotating torque bi-directionally or repeatedly.

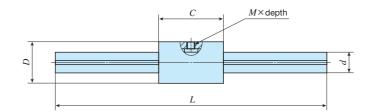
Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

6 Mounting of external cylinder

When press-fitting the external cylinder to the housing, assemble them correctly by using a press and a suitable jig fixture. (See Fig. 2.)


Fig. 2 Press-fitting of external cylinder

IXU Linear Bushing G

LMG Shape Size 6 8 10 13 16 20

Hollow shaft dimension for LMGT

Identification	ngeable	Ma	ass (Ref.)		Nominal dimensions and tolerances mm											Basic dynamic load rating	Basic static load rating	Dynamic (5) torque rating	Static (5) torque rating
number	Interchar	External cylinder	Shaft with grooved raceway (1)	D	Dim. D tolerance	С	Dim. C tolerance	M×depth (²)	d	Dim. d tolerance		$d_2^{(3)}$	K	L(4)	Maximum length	C N	С _о N	<i>T</i> N⋅m	$T_{_{0}}$ N \cdot m
LMG 6	0	9.4	22.0	12	0	19	0	M2.5×1.9	6	0		5.2	_	150 200	300	587	641	2.1	2.2
LMGT 6	0	5.4	19.5	12	-0.011	19	-0.200	(2.5)	0	-0.012		5.2	2	150 200	300	367	041	2.1	2.2
LMG 8	0	15.7	39.3	15	0	24	0	M3 ×2.4	8	0		7	_	150 200 250	500	769	962	3.5	4.3
LMGT 8	0	13.7	33.7	13	-0.011	24	-0.200	(3)	0	-0.015		1	3	130 200 230	400	709	902	3.3	4.5
LMG 10	0	31.5	61.2	19	0	29	0	M3 ×3.1	10	0		8.9	_	200 300	600	1 410	1 710	8.0	9.7
LMGT 10	0	31.3	51.4	19	-0.013	29	-0.200	(4)	10	-0.015		0.9	4	200 300	000	1410	1710	8.0	9.7
LMG 13	0	45.4	104	23	0	32	0	M3 ×3.4	13	0		11.9	_	200 300 400	800	1 880	2 150	13.7	15.7
LMGT 13	0	45.4	81.4	20	-0.013	52	-0.200	(4.5)	10	-0.018		11.5	6	200 300 400	000	1 000	2 130	15.7	15.7
LMG 16	0	78.2	157	28	0	37	0	M4 ×4.1	16	0		14	_	200 300 400	1 000	2 590	2 930	23.1	26.1
LMGT 16	0	10.2	118		-0.013	37	-0.200	(5.5)	10	-0.018		14	8	200 300 400	1 000	2 390	2 930	23.1	20.1
LMG 20	0	110	246	32	0	42	0	M4 ×4.1	20	0		17.5	_	300 400 500 600	1 000	3 010	3 660	32.8	39.9
LMGT 20	0	110	185	32	-0.016	42	-0.200	(5.5)	20	-0.021		17.5	10	300 400 300 600	1 000	3010	3 000	32.0	39.9

Notes (1) The mass of the shaft with grooved raceway is the value per 100 mm of the track groove part.

(2) The values in () are the maximum fixing thread depth.

(3) d_2 represents the maximum diameter for end machining. (Perform annealing if end machining will be performed.)

(4) Represents standard length. We can produce other than the standard length, please specify the length of the shaft with grooved raceway by indicating the length in mm with the identification number.

(5) Applicable under loaded conditions with an unidirectional torque at all times.

Use IKO Linear Ball Spline G under loaded conditions with a rotating torque bi-directionally or repeatedly.

Remark: Linear Bushing G are all interchangeable specification.

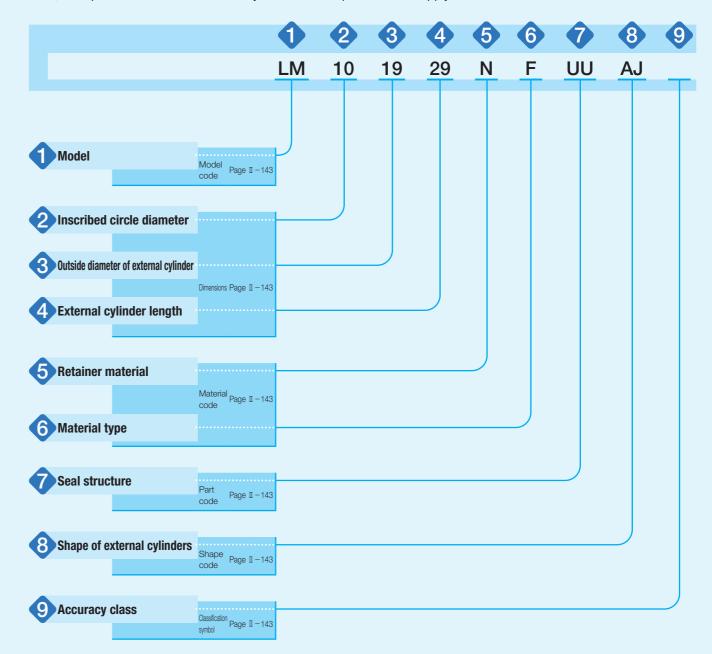
Points

Simple replacement for rolling guide

Since the structure adopts the raceway to be run along the shaft, the rolling guide of conventional bushing type can be easily modified to rolling guide without major design changes.

Wide range of variations for your needs

For each dimensional series, standard, adjustable clearance, and open types are available with and without seals. You can select an optimal Linear Bushing for the specifications of your machine and device.


Stainless steel superior in corrosion resistance are listed on lineup.

Products made of stainless steel are highly resistant to corrosion, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

Identification Number and Specification

Example of an identification number

The specification of LM series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a material code, a part code, a shape code, and a classification symbol for each specification to apply.

II - 142

Identification Number and Specification —Model · Inscribed Circle Diameter · Outside Diameter of External Cylinder ·

Linear Bushing (LM Series)		Metric series Inch series	: LM : LME (European specification (¹)) : LMB
For applicable models ar	nd sizes, see	Table 1.	
		diameter in mm.	ries, indicate the inscribed circle es, indicate the inscribed circle of 1/16 inch.
		external cylinder in For the inch series	es, indicate the outside diameter of mm. s, indicate the outside diameter of the unit of 1/16 inch.
		cylinder in mm.	es, indicate the length of the externals, indicate the length of external of 1/16 inch.
•	•	and sizes, see the	er material. For applicable models "Identification number" column in e on pages II-147 to II-168.
High carbon steel made Stainless steel made	: No symbol : F (²)	models and sizes,	onent part material. For applicable see the "Identification number" ension table on pages II-147 to
Without seal With one end seal With two end seals	: No symbol : U : UU	incorporate seals of performance for prosubstances. For the seal (no symbol) care	ne end seal and two end seals with superior dust protection reventing intrusion of foreign the inch series, only the type without an be specified. The maximum ture for seals is 120°C.
Standard type Adjustable clearance type Open type	: No symbol : AJ : OP	For applicable mod	dels and sizes, see Table 1.
High Precision	: No symbol : P	available for the ac standard type serie For the adjustable only high class (no accuracy values ar external cylinders.	clearance type and the open type, symbol) is available, and the re applicable only before cutting the tracy, see the dimension table on
	(LM Series) For applicable models are series and series and series and series are series and series are series and series and series and series are series and series are series and series and series are series and series are series and series are serie	(LM Series) For applicable models and sizes, see Term applicable models and sizes, see Term applicable models and sizes, see Term applicable and sizes, see Term applicable and sizes, see Term applicable and symbol synthetic resin made : No symbol Synthetic resin made : No symbol Stainless steel made : F (²) Without seal : No symbol : UU With one end seal : U With two end seals : UU Standard type : No symbol Adjustable clearance : AJ type Open type : OP High : No symbol	(LM Series) Inch series For applicable models and sizes, see Table 1. For the metric sediameter in mm. For the inch seried idiameter in the unit diameter in the unit seried external cylinder in For the inch seried external cylinder in For the inch seried external cylinder in For the inch seried external cylinder in mm. For the metric seried external cylinder in For the inch seried external cylinder in mm. For the inch s

Note (1) It is specification with the dimensions and tolerances generally used in Europe.

External Cylinder Length · Retainer Material · Material Type · Seal Structure · Shape of External Cylinder · Accuracy Class—

Table. 1 Models and sizes of LM series

External cylinder shape	Dimensional series	Material type	Seal structure	Model	Size (Shaft diameter)
			Without seal	LM LME	6 ~150 mm 5 ~ 80 mm
a		High carbon steel made	With one end seal	LM ··· U LME ··· U	6 \sim 150 mm 5 \sim 80 mm
Standard type			With two end seals	LM ··· UU LME ··· UU	6 ~150 mm 5 ~ 80 mm
	Metric series		Without seal	LM ··· F LME ··· F	6 ~ 60 mm 5 ~ 60 mm
		Stainless steel made	With one end seal	LM ··· F U LME ··· F U	6 ~ 60 mm 5 ~ 60 mm
			With two end seals	LM ··· F UU LME ··· F UU	6 ~ 60 mm 5 ~ 60 mm
	Inch series	High carbon steel made	Without seal	LMB	6.350~101.6 mm (1/4~ 4in)
			Without seal	LM ··· AJ LME ··· AJ	6 \sim 150 mm 5 \sim 80 mm
A.D	Metric series	High carbon steel made	With one end seal	LM ··· U AJ LME ··· U AJ	6 ~150 mm 5 ~ 80 mm
Adjustable clearance type			With two end seals	LM ··· UU AJ LME ··· UU AJ	6 ~150 mm 5 ~ 80 mm
		Stainless steel made	Without seal	LM ··· F AJ LME ··· F AJ	6 ~ 60 mm 5 ~ 60 mm
			With one end seal	LM ··· F U AJ	6 ~ 60 mm 5 ~ 60 mm
		Steel Hade	With two end seals	LM ··· F UU AJ LME ··· F UU AJ	6 ~ 60 mm 5 ~ 60 mm
	Inch series	High carbon steel made	Without seal	LMB ··· AJ	6.350~101.6 mm (1/4~ 4in)
			Without seal	LM ··· OP LME ··· OP	10 ~150 mm 12 ~ 80 mm
Open type		High carbon steel made	With one end seal	LM ··· U OP LME ··· U OP	10 ~150 mm 12 ~ 80 mm
Орон туре	Metric series		With two end seals	LM ··· UU OP LME ··· UU OP	10 ~150 mm 12 ~ 80 mm
	wietric series		Without seal	LM ··· F OP LME ··· F OP	10 ~ 60 mm 12 ~ 60 mm
Contract of the Contract of th		Stainless steel made	With one end seal	LM ··· F U OP LME ··· F U OP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			With two end seals	LM ··· F UU OP LME ··· F UU OP	10 ~ 60 mm 12 ~ 60 mm
	Inch series	High carbon steel made	Without seal	LMB ··· OP	12.700~101.6 mm (1/2~ 4in)

Standard type : Product with high accuracy used generally over a wide range

Adjustable clearance type: This type has a cut-away slit in an axial direction of external cylinder, which is capable of clearance adjustment. If installed in a housing whose inscribed circle diameter is adjustable, it enables radial clearance to be freely adjusted without optional fitting and also enables preloading to operate.

Open type

: This type is in sectoral form with the external cylinder cut away in slit by one-row raceway or two-row raceways of ball in an axial direction. In order to avoid the occurrence of long shaft deflection, it is possible to accordingly add the shaft support block tailored to (E) dimension of the sectoral form shown in the dimension table, in a midway point. And, it is also capable of clearance adjustment.

Relationship between Load Rating and Ball Raceway

The load rating of LM series varies according to the loading direction and position of ball raceway. The dimension table describes two types of values shown in Fig. 1.1 and Fig. 1.2 according to the loading direction and position of ball raceway.

Fig. 1.1 shows the case where the loading direction and ball raceway position coincides with each other, representing the loading direction A in the dimension table. Generally, this is applied when the ball raceway position cannot be specified to indeterminate direction load or loading direction.

Fig. 1.2 shows the case where the loading direction is positioned between ball raceways,

Fig. 1.2 shows the case where the loading direction is positioned between ball raceways, representing the loading direction B in the dimension table. Generally, this can be subjected to load bigger than loading direction A.

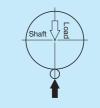


Fig. 1.1 Loading direction A

Fig. 1.2 Loading direction B

Ⅱ -143

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

⁽²⁾ The cage will be always stainless steel even when high carbon steel (no symbol) is specified.

Lubrication

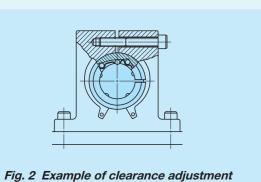
Grease is not pre-packed in the LM series, so please perform adequate lubrication as needed. Both of oil lubrication and grease lubrication are available in the LM series. For grease lubrication, use of high-quality lithium-soap base grease is recommended.

Precaution for Use

OFitting

For fitting with a housing hole, clearance fit is usually used but transition fit can also be used for special usage.

For adjustable clearance type and open type, the shaft diameter shall be set as much as possible to less than the lower limit of the allowance of the inscribed circle diameter, and while the dimension of a housing hole shall be set to more than the upper limit of the allowance of the outside diameter of the external cylinder.


Table 2 Recommended fit

		Tolerance class							
Models		Sh	aft	Housing hole					
accuracy	class	Ordinary	Interference	Clearance	Transition				
		clearance	fit	fit	fit				
LM, LMB	High	f6, g6	h6	H7	J7				
LIVI, LIVID	Precision	f5, g5	h5	H6	J6				
LME	_	h6	j6	H7	J7				

2Clearance

For adjustable clearance type and open type, clearance adjustment can be easily performed if the unit is mounted into a housing with the bore diameter dimension adjustable. However, if a large preload is produced due to the clearance adjustment, the deformation at the contact portion of the external cylinder and ball may become large, thereby deteriorating the life. Therefore, it is recommended to finish the shaft dimension within the allowance of the recommended fitting and set the clearance at zero or under a slightly-preloaded condition.

Although the clearance adjustment is performed while measuring the clearance with a dial gauge after fitting in a shaft, a method is generally taken to rotate the shaft under unloaded condition during clearance adjustment and stop the adjustment at the timing when detecting a slight resistance. At this time, the Linear Bushing clearance is at zero or under a slight preload condition. Meanwhile, the clearance adjustment for open type with three-row ball raceways cannot be performed.

3Raceway

Since LM series operates with a shaft as a raceway surface, the shaft should be heat-treated and ground. Recommended values for surface hardness and roughness of the shaft are shown in Table 3 and the recommended value for the minimum effective hardening depth is shown in Table 4.

Table 3 Surface hardness and roughness of shaft

Item	Recommended value	Remark
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).
Surface roughness	0.2 μmRa or lower (0.8 μmRy or lower)	Where accuracy standard is low, around 0.8 μmRa (3.2 μmRy) is also allowed.

Note (1) For hardness factor, refer to Fig. 3 in page \mathbb{I} -5.

Table 4 Minimum effective hardening depth of shaft unit: mm

Shaft d	iameter	Recommended value for
Over	Incl.	minimum effective hardening depth
-	28	0.8
28	50	1.0
50	100	1.5
100	150	2.0

When accompanied by rotational motion

LM series units support only linear motion but do not support rotational motion. When performing rotational motion and linear motion of short stroke length, IKO Stroke Rotary Bushing is recommended to be used. And, for the usage requiring rotational motion and linear motion of long stroke length, it is recommended to use in combination with IKO needle bearing as shown in Fig. 3.

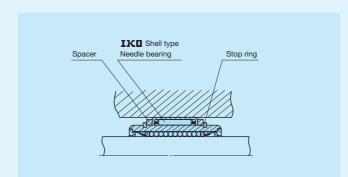
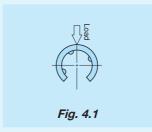
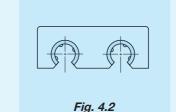
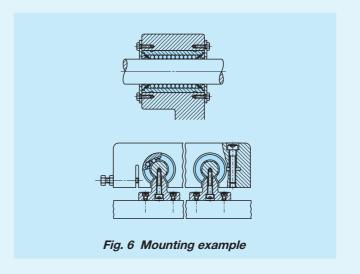




Fig. 3 Example of linear motion and rotational motion

⑤Precaution for use of open type with three-row linear bushing

The open type with three-row Linear Bushing of balls may only be used with load direction indicated in Fig. 4.1. In addition, if two of them are used in parallel, mount them as indicated in 4.2, taking into account the load distribution to rolling elements. And, note that the clearance adjustment cannot be performed.

6Operating temperature


If the retainer is made of carbon steel, it can withstand higher temperature. However, if you use it in an environment exceeding 100°C, please contact IKO. The maximum operating temperature of synthetic resin made products is 100°C and temperature up to 80°C is allowed for continuous operation.

Mounting

When pressing an external cylinder into the housing hole, do is softly while applying a jig to the sides of the external cylinder not to hit the end plate (see Fig. 5). After pressing-in, use a stop ring or stopper plate to fix it in an axial direction. When inserting shaft after mounting the external cylinder, be careful not to shock the ball or retainer. In addition, when two shafts are used, mount one accurately and then the other by referring to the first one so as to ensure parallelism with it. Typical mounting example is shown in Fig. 6.

Fig. 5 Press-fitting of external cylinder

Related Products.

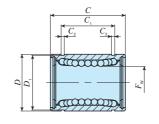
Slide shaft

To make full use of performance of the LM series, we also offer shaft with high accuracy for Linear Bushing grounded after heat treatment. If you are interested, contact IKO. Conventional ordinary type shafts are also available.

Felt seals for Linear Bushing

Though the type with seal is standardized for the LM series, the type without seal and felt seals may be used together when emphasis is put on rolling friction resistance. Dimensions for felt seals are shown in Table 5.

Table 5 Dimensions of felt seals for Linear Bushing


unit: mm

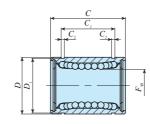
			driit. IIIIII
Identification number	d	D	В
FLM 6	6	12	2
FLM 8	8	15	2
FLM 10	10	19	3
FLM 13	13	23	3
FLM 16	16	28	4
FLM 20	20	32	4
FLM 25	25	40	5
FLM 30	30	45	5
FLM 35	35	52	5
FLM 40	40	60	5
FLM 50	50	80	10
FLM 60	60	90	10
FLM 80	80	120	10
FLM 100	100	150	10

Remark: For adjustable clearance type, open type and inch series felt seals, contact IKO.

IXLinear Bushing

			Sta	nda	rd t	ype		Adj	ustal	ole cl	eara	nce t	ype		0	per	typ	е	
				LM LM	N					М… М…						М… М…	N C	-	
S	hape								•	8								•	
	0. 6	6	8	10	12	13	16	6	8	10	12	13	16	_	_	10	12	13	16
	Shaft liameter	20	25	30	35	40	50	20	25	30	35	40	50	20	25	30	35	40	50
ui	anielei	60	80	100	120	150		60	80	100	120	150		60	80	100	120	150	

							Identi	ification	numl	ber									N	lominal	dime	nsions a	and tole	ances m	nm				Eccen	tricity	Basic d	lynamic rating	Basic st	atic load ing
Shaft diameter	Sta	andard type	l raceway	Mass (Ref.)	Adjust	table (clearanc	e type	l g	Mass (Ref.)		Open type		I raceway	Mass (Ref.)	$F_{\rm w}$	Dim.	ance	D	Dim. D tolerance	C	Dim. C tolerance	C_1 (1) Dim toler	C_1 ance C_2	D_1	h	E	α	Maxir μr		Load direction A	Load direction B	Load direction A	Load direction B
mm			Ball	g					Ball	g				Ball	g		P	Н		μm		μm	μ	m				Degree	Р	Н	N	N	N	N
6	LM LM	61219 61219 N	4	8 7.6	LM	61	1219 N	AJ*	4	- 7.5				_	_	6			12		19		13.5	1.1	11.5	1	_	_			80.7	92.7	167	237
	LM LM	81517 81517 N	4	13 10.4	LM	81	 1517 N	AJ*	4	- 10				_	_	8			15	0 -11	17		11.5	1.1	14.3	- 1	-	-			87.4	100	160	226
8	LM LM	81524 81524 N	4 4	18 15	LM	81	1524 N	AJ*	- 4	- 14.7				_	_	8			15		24		17.5	1.1	14.3	- 1	-	_			121	139	255	361
10	LM LM	101929 101929 N	4	33.8 26.8	LM	101	1929 N	AJ*	- 4	- 26.2	LM	101929 N	OP*	- 3	- 20.8	10	0 -6	0 - 9	19		29	0	22	1.3	18	- 1	- 6.8	- 80	8	12	179	206	354	501
12	LM LM	122130 122130 N	4 4	32.2 30.4	LM LM		2130 2130 N	AJ*	4	31.5 29.7	LM LM	122130 122130 N	OP*	3	25 24.5	12			21	0	30	-200	23	1.3	20	1.5	8	80			259	298	503	711
13	LM LM	132332 132332 N	4 4	43 42.5	LM LM		2332 2332 N	AJ*	4	42 41.5	LM LM	132332 132332 N	OP*	3	31 31	13			23	-13	32		23	1.3	22	1.5	9	80			266	306	506	716
16	LM LM	162837 162837 N	4 4	70 69	LM LM		2837 2837 N	AJ*	4	69.5 68	LM LM	162837 162837 N	OP*	3	58 52	16			28		37		26.5	1.6	27	1.5	11	80			426	489	766	1 080
20	LM LM	203242 203242 N	5 5	92 87	LM LM		3242 3242 N	AJ*	5 5	91 85	LM LM	203242 203242 N	OP*	4	79 69	20			32		42	;	30.5	1.6	30.5	1.5	11	60			562	668	1 010	1 470
25	LM LM	254059 254059 N	6	226 220	LM LM		4059 4059 N	AJ*	6 6	222 216	LM LM	254059 254059 N	OP*	5 5	203 188	25	0 -7	0 -10	40	0 -16	59		41	1.85	38	2	12	50	10	15	920	974	1 780	2 280
30	LM LM	304564 304564 N	6	253 250	LM LM		4564 4564 N	AJ*	6 6	250 245	LM LM	304564 304564 N	OP*	5 5	228 210	30			45		64		44.5	1.85	43	2.5	15	50			1 460	1 540	2 780	3 560
35	LM LM	355270 355270 N	6	388 380	LM LM		5270 5270 N	AJ*	6	380 375			OP*	5 5	355 335	35			52		70	-300	49.5	0 2.1	49	2.5	17	50			1 610	1 710	3 080	3 940
40	LM LM	406080 406080 N	6	596 585	LM LM		6080 6080 N	AJ*	6 6	585 579	LM LM	406080 406080 N	OP*	5 5	546 500	40	0 -8	0 -12	60	0 -19	80		60.5	2.1	57	3	20	50	12	20	2 030	2 150	3 620	4 640
50		5080100 5080100 N	6	1 615 1 580	LM LM		0100 0100 N	AJ* AJ*	6	1 595 1 560		5080100 5080100 N	OP*	5 5	1 420 1 340	50			80		100		74	2.6	76.5	3	25	50			3 940	4 180	7 130	9 120


Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1 dimension.

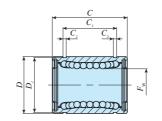
Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively. 2. Standard type and adjustable clearance type end plates are fixed with stop ring for holes.

3. The identification numbers with * are our semi-standard items.

		Sta	nda	rd t	ype	•	Adj	ustal	ole c	leara	nce	type		0	per	typ	ре	
			LM LM	N						A N A					М… М…	N C	-	
Shape		(1					•	8					(•	
01 6	6	8	10	12	13	16	6	8	10	12	13	16	_	_	10	12	13	16
Shaft diameter	20	25	30	35	40	50	20	25	30	35	40	50	20	25	30	35	40	50
ulanielei	60	80	100	120	150		60	80	100	120	150		60	80	100	120	150	

LM 6090110 AJ LM 6090110 N AJ

					Identification	n num	ber						N	ominal	dimen	nsions	and to	erance	s mm			Ecce	ntricity	Basic d load r	lynamic rating	Basic sta	
SI diar	naft neter	Standard type	Iraceway	Mass (Ref.)	Adjustable clearance type	Iraceway	Mass (Ref.)	Open type	l raceway	Mass (Ref.)		Dim. F tolerand	ce D	Dim. D tolerance	$C \mid_{to}^{C}$	Dim. C	$C_1^{(1)}$	im. C_1	$C_2 \mid D_1$	h	Ε α		kimum µm	Load direction A	Load direction B	Load direction A	Load direction B
n	nm		Bal	g		Bal	g		Bal	g	F	P I	4	μm		μm		μm			Degr	ee P	H	N	N	N	N
	60	LM 6090110 LM 6090110 N	6 6	1 817 1 787	LM 6090110 AJ* LM 6090110 N AJ*		1 788 1 757	LM 6090110 OP LM 6090110 N OP		1 650 1 610	60	0	0 90	•	110	0 -300	85	-300	3.15 86	.5 3	30 50	17	25	4 760	5 040	8 150	10 400
	80	LM 80120140*	6	4 520	LM 80120140 AJ*	6	4 400	LM 80120140 OP	* 5	3 750	80	- 9 -	15 120	-22	140		105.5	4	1.15 116	3	40 50)		8 710	9 220	14 500	18 500
1	00	LM 100150175*	6	8 600	LM 100150175 AJ*	6	8 540	LM 100150175 OP	* 5	7 200	100	0	0 150	0	175	0	125.5	0 4	1.15 145	3	50 50)	00	14 500	15 300	22 800	29 200
1	20	LM 120180200*	8	15 000	LM 120180200 AJ*	8	14 900	LM 120180200 OP	* 6	11 600	120 -	-10 -	20 180	-25	200	-400	158.6	-400	1.15 175	3	85 80	20	30	25 800	25 500	44 300	49 400
1	50	LM 150210240*	8	20 250	LM 150210240 AJ*	8	20 150	LM 150210240 OP	* 6	15 700	150 _	0 -	0 25 210	0 -29	240	-	170.6	į	5.15 204	3	105 80	25	40	35 600	35 100	61 200	68 200


Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1

- Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

 2. Standard type and adjustable clearance type (shaft diameter 60 mm) end plates are fixed with stop ring for holes.
 - 3. The identification numbers with * are our semi-standard items.

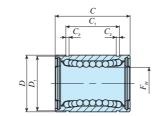
		Sta	nda	rd t	ype		Adju	ustal	ole cl	eara	nce t	ype		0	pen	typ	е	
			M		U U			LM LM			I AJ I AJ			LM LM	N		OP OP	
Shape		(9					•	8								•	
01 (1	6	8	10	12	13	16	6	8	10	12	13	16	_	_	10	12	13	16
Shaft diameter	20	25	30	35	40	50	20	25	30	35	40	50	20	25	30	35	40	50
ulainetei	60	80	100	120	150		60	80	100	120	150		60	80	100	120	150	

LM…UU

LM…UU AJ

						Identification	num	ber							Nomi	nal di	mensions	s and t	olerance	es mr	n			Ec	centricity	Basic d load i		Basic load i	
Shat	eter	Standard type	all raceway	Mass (Ref.)	Adjus	stable clearance type	ğ	Mass (Ref.)	Open type	all raceway	Mass (Ref.)	$F_{\rm w}$	Dim. F	ce D	Dim. D tolerance	$\perp C$	tolerance	(: (¹)	Dim. C_1 olerance	C_2	D_1	h	E	α	aximum µm	direction A	Load direction B		
mm			Ball	g			Ball	g		Ball	g		P F	1	μm		μm		μm				D	egree F	РН	N	N	N	N
6	6	LM 61219 UU LM 61219 N UU		8 7.6	LM	61219 N UU AJ*	4	7.5		_	_	6		12	?	19		13.5	-	1.1	11.5	- 	-	-		80.7	92.7	167	237
		LM 81517 UU LM 81517 N UU		13 10.4	LM	81517 N UU AJ*	- 4	- 10		-	-	8		15	0 -11	17		11.5	-	1.1	14.3	-	-	_		87.4	100	160	226
8	3 -	LM 81524 UU LM 81524 N UU	4	18 15	LM		_	14.7		_	_	8		15	5	24		17.5	-	1.1	14.3	-	_	_		121	139	255	361
10)	LM 101929 UU LM 101929 N UU	4	33.8 26.8		101929 N UU AJ*	-	26.2	 LM 101929 N UU OP*	-	- 20.8	10	0 -6 -	0 19)	29		22		.3	18	-	- 6.8	- 80	8 12	179	206	354	501
12	2	LM 122130 UU LM 122130 N UU	4	32.2 30.4	LM	122130 UU AJ* 122130 N UU AJ*	4	31.5	LM 122130 UU OP* LM 122130 N UU OP*	3	25 24.5	12		21		30	-200	23	-200	1.3	20	1.5		80		259	298	503	711
13		LM 132332 UU LM 132332 N UU	4	43 42.5	LM	132332 UU AJ* 132332 N UU AJ*	4	42 41.5	LM 132332 UU OP* LM 132332 N UU OP*	3	31	13		23	0 -13	32		23	-	1.3	22	1.5	9	80		266	306	506	716
16	,	LM 162837 UU LM 162837 N UU		70 69	LM	162837 UU AJ*	4	69.5	LM 162837 UU OP* LM 162837 N UU OP*	3	58 52	16		28	3	37	-	26.5	-	1.6	27	1.5	11	80		426	489	766	1 080
20)	LM 203242 UU LM 203242 N UU		92	LM	203242 UU AJ* 203242 N UU AJ*	5	91	LM 203242 UU OP* LM 203242 N UU OP*	4	79 69	20		32	2	42		30.5	-	1.6	30.5	1.5	11	60		562	668	1 010	1 470
25	,	LM 254059 UU	6	226	LM	254059 UU AJ*	6	222	LM 254059 UU OP*	5	203	25	0 -7 -1	0 40	0 -16	59		41	-	1.85	38 2	2	12	50 1	0 15	920	974	1 780	2 280
30		LM 254059 N UU LM 304564 UU		220 253		254059 N UU AJ* 304564 UU AJ*		216 250	LM 254059 N UU OP* LM 304564 UU OP*		188 228	30	-/ -	45		64		44.5		.85	43 3	2.5	15	50		1 460	1 540	2 780	3 560
		LM 304564 N UU	6	250	LM	304564 N UU AJ*	6	245	LM 304564 N UU OP*		210			-70		04		.4.0		.50	.5		.5		\perp	1 400	. 0-10	2 100	
35	5	LM 355270 UU LM 355270 N UU		387 380		355270 UU AJ* 355270 N UU AJ*		380 375	LM 355270 UU OP* LM 355270 N UU OP*		355 335	35		52	2	70	0 -300	49.5	-300 2	2.1	49 2	2.5	17	50		1 610	1 710	3 080	3 940
40)	LM 406080 UU LM 406080 N UU		596 585		406080 UU AJ*		585 579	LM 406080 UU OP* LM 406080 N UU OP*		546 500	40	0 -8 -1	0 60	0 -19	l an		60.5	2	2.1	57	3	20	50 1	2 20	2 030	2 150	3 620	4 640
50	,	LM 5080100 UU LM 5080100 N UU	6	1 615 1 580	LM	5080100 UU AJ* 5080100 N UU AJ*	6	1 595 1 560	LM 5080100 UU OP* LM 5080100 N UU OP*	5	1 420 1 340	50		80		100		74		2.6	76.5	3	25	50		3 940	4 180	7 130	9 120

Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1 dimension.


Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

Standard type and adjustable clearance type end plates are fixed with stop ring for holes.

3. The identification numbers with * are our semi-standard items.

		Sta	nda	rd t	ype		Adju	ustak	ole cl	eara	nce t	ype		0	pen	typ	е	
			Μ···	N U	U			LM LM		UU	I AJ I AJ		l	LM LM			OP OP	
Shape		•						•	8					(•	
01. 6	6	8	10	12	13	16	6	8	10	12	13	16	_	_	10	12	13	16
Shaft diameter	20	25	30	35	40	50	20	25	30	35	40	50	20	25	30	35	40	50
ulailletei	60	80	100	120	150		60	80	100	120	150		60	80	100	120	150	

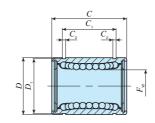
LM…UU

LM 6090110 UU AJ LM 6090110 N UU AJ

LM…UU AJ

				Identification	numb	per							Nomi	nal dim	ensions a	and tolera	nces n	nm		Ecc	entricity	Basic d load r		Basic load i	
Shaft diamete	Standard type	all raceway	Mass (Ref.)	Adjustable clearance type	all raceway	Mass (Ref.)	Open type	all raceway	Mass (Ref.)	$F_{ m w}$	toler. μ	. Fw ance	D Dim. D tolerance	C	Dim. C tolerance	Dim. o		D_1 h	E	α			Load direction B	Load direction A	Load direction B
mm		B	g		B	g		B	g		Р	H	μm		μm	μn			De	gree P	H	N	N	N	N
60	LM 6090110 UU	6	1 817	LM 6090110 UU AJ*	6	1 788	LM 6090110 UU OP*	5	1 650	60	0		90 0	110	0 ,	35	0 3.15	86.5 3	30 5	50		4 760	5 040	8 150	10 400
00	LM 6090110 N UU	6	1 787	LM 6090110 N UU AJ*	6	1 757	LM 6090110 N UU OP*	5	1 610		- 9	-15 -	-22		-300	-30	0 0.13	00.5		17	7 25	4700	3 040	0 100	10 400
80	LM 80120140 UU*	6	4 400	LM 80120140 UU AJ*	6	4 360	LM 80120140 UU OP*	5	3 640	80			20	140	10	5.5	4.15	116 3	40 5	0		8 710	9 220	14 500	18 500
100	LM 100150175 UU*	6	8 500	LM 100150175 UU AJ*	6	8 450	LM 100150175 UU OP*	5	7 120	100	0	0	50 0	175	0 12	25.5	0 4.15	145 3	50 5	0 0	30	14 500	15 300	22 800	29 200
120	LM 120180200 UU*	8	14 700	LM 120180200 UU AJ*	8	14 600	LM 120180200 UU OP*	6	11 400	120	-10	-20	80 -25	200	-400 ₁₅	8.6 -40	0 4.15	175 3	85 8	80	30	25 800	25 500	44 300	49 400
150	LM 150210240 UU*	8	19 900	LM 150210240 UU AJ*	8	19 800	LM 150210240 UU OP*	6	15 400	150	0 -13	-25 ²	$^{2}10 ^{0}_{-29}$	240	17	0.6	5.15	204 3	105 8	0 25	5 40	35 600	35 100	61 200	68 200

Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1


Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

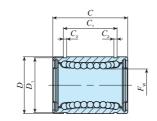
2. Standard type and adjustable clearance type (shaft diameter 60 mm) end plates are fixed with stop ring for holes.

3. The identification numbers with * are our semi-standard items.

IXU Linear Bushing

		Sta	nda	rd t	ype		Adju	ıstak	ole cl	eara	nce t	type		0	pen	typ	е	
			.ME		1				/ΙΕ··	_	AJ AJ				/ΙΕ··	· N (OP OP	
Shape			1					•)			(•	
Shaft	5	8	12	16	20	25	5	8	12	16	20	25	_	_	12	16	20	25
diameter	30						30	40	50	60	80		30	40	50	60	80	

LME···AJ LME 80120165 AJ


							Identificati	on nu	mber							Nom	inal d	imensio	ons and	tolerar	ices mi	n			Eccentric		dynamic rating		static rating
Shaf diamet	ter	Standar	urd type	Ball raceway	Mass (Ref.)	Adjust	table clearance type	Ball raceway	Mass (Ref.)	Open type	Ball raceway	Mass (Ref.)	F I	Dim. Fw tolerance		Dim. D tolerance µm	C = 1	Dim. C tolerance µm	((')	Dim. C_1 tolerance μ m	C_2	D_1	h	E D	α Maximu	direction A	C Load direction B	Load	C ₀ Load direction B
5	L	ME .	51222 N*	4	11	LME	51222 N AJ*	4	9.5		-	_	5		12		22		14.5		1.1	11.5	1	-	-	90.8	104	219	310
8			81625 * 81625 N*	4 4	20 20	LME	81625 N AJ*	4	- 19.5		_	_	8	+ 8	16	- 8	25		16.5		1.1	15.2	1	-	_	121	139	255	361
12			122232 * 122232 N*	4	41.5 40	LME LME		4 4	40.5 39	LME 122232 OP LME 122232 N OP		32 30	12	J	22	0	32	0 -200	22.9	0 -200	1.3	21	1.5	7.5	78 12	259	298	503	711
16			162636 * 162636 N*	4 4	56.5 55	LME		4 4	55.5 54	LME 162636 OP		48 46	16	+ 9	26	- 9	36	200	24.9	200	1.3	24.9	1.5	10	78	283	325	514	726
20			203245 * 203245 N*	5 5	97 91	LME LME		5 5	96 90	LME 203245 OP LME 203245 N OP		84 75	20	- 1	32		45		31.5		1.6	30.3	2	10	60	562	668	1 010	1 470
25	-		254058 * 254058 N*	6	222 215	LME LME		6	219 212	LME 254058 OP LME 254058 N OP		195 181	25	+11	40	0 -11	58		44.1		1.85	37.5	2	12.5	60 15	920	974	1 780	2 280
30			304768 * 304768 N*	6 6	338 325	LME		6	333 320	LME 304768 OP LME 304768 N OP		309 272	30	- 1	47		68	0	52.1	0	1.85	44.5	2	12.5	50	1 350	1 430	2 500	3 200
40			106280 * 106280 N*	6	712 705	LME		6	701 694	LME 406280 OP LME 406280 N OP		665 600	40		62	0	80	-300	60.6	-300	2.15	59	3	16.8	50	2 030	2 150	3 620	4 640
50)75100 *)75100 N*	6 6	1 147 1 130		5075100 AJ* 5075100 N AJ*	6 6	1 127 1 110	LME 5075100 OP LME 5075100 N OP		1 080 970	50	+13 - 2	75	-13	100		77.6		2.65	72	3	21	50	3 940	4 180	7 130	9 120
60	-)90125 *)90125 N*	6	2 051 2 050		6090125 AJ* 6090125 N AJ*	6	2 001 2 000	LME 6090125 OP LME 6090125 N OP		1 900 1 580	60		90	0 -15	125	0 -400	101.7	0 -400	3.15	86.5	3	27.2	54 20	4 760	5 040	8 150	10 400
80	L	ME 801	120165 *	6	5 140	LME	80120165 AJ*	6	5 000	LME 80120165 OP	* 5	4 380		+16 - 4	120		165	700	133.7	400	4.15	116	3	36.3	54	8 710	9 220	14 500	18 500

Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1

Remarks 1. High carbon steel-made retainer (shaft diameter 8 mm), and standard type and adjustable clearance type (shaft diameter 12 mm to 60 mm) end plates are fixed with stop ring for holes.

2. The identification numbers with * are our semi-standard items.

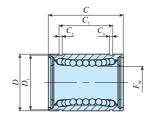
		Stai	nda	rd t	ype		Adj	ustal	ole cl	eara	nce	ype		0	pen	typ	е	
			1Ε ··	•	UU		-	.ME	N		J A		_	.ME	•	_) OI	
Shape			1					•)			(•	
Shaft	5	5 8 12 16 20 30 40 50 60 80			25	5	8	12	16	20	25	-	_	12	16	20	25	
diameter	30	40	50	60	80		30	40	50	60	80		30	40	50	60	80	

LME...UU

LME···UU AJ

LME 80120165 UU AJ

					Identification nu	ımbeı	r							Nom	inal di	imensi	ons and	toleran	ices mi	m			Eccentricity	Basic dy load ra			static rating
Shaft diamete		Standard type	II raceway	Mass (Ref.)	Adjustable clearance type	II raceway	Mass (Ref.)	Open type	II raceway	Mass (Ref.)	F	Dim. Fw tolerance	D	Dim. D tolerance	$C \perp$	Dim. C	(· (·)	Dim. C_1 tolerance	C_2	D_1	$h \mid E$	α	Maximum	Load direction A	Load direction B	Load	C_0 Load direction B
mm			Ba	g		Ba	g		Ball	g		μm		μm		μm		μm				Degree	μm	N	N	N	N
5	L	_ME 51222 N UU*	4	11	LME 51222 N UU AJ*	4	9.5		-	_	5		12		22		14.5		1.1	11.5 1				90.8	104	219	310
8		_ME 81625 UU* _ME 81625 N UU*	4	20 20	 LME 81625 N UU AJ*	4	- 19		-	-	8	+ 8	16	- 8	25		16.5		1.1	15.2	- -	_		121	139	255	361
12		ME 122232 UU*	4	41.5	LME 122232 UU AJ*	4	40.5	LME 122232 UU OP*	3	32	12	U	22		32	0	22.9	0	1.3	21 1	.5 7.5	78	12	259	298	503	711
16	L	_ME 122232 N UU* _ME 162636 UU*	4	56.5	LME 122232 N UU AJ* LME 162636 UU AJ*	4	39 55.5	LME 162636 UU OP*	3	30 48	16		26	- 9	36	-200	24.9	-200	1.3	24.9 1	.5 10	78		283	325	514	726
		_ME 162636 N UU* _ME 203245 UU*	5	55 97	LME 162636 N UU AJ* LME 203245 UU AJ*	5	54 96	LME 162636 N UU OP* LME 203245 UU OP*	3	46 84		+ 9 - 1															
20		_ME 203245 N UU*	5	91	LME 203245 N UU AJ*	5	90	LME 203245 N UU OP*	4	75	20		32		45		31.5		1.6	30.3 2	10	60		562	668	1 010	1 470
25		_ME 254058 UU* _ME 254058 N UU*(2)	6	222 215	LME 254058 UU AJ* LME 254058 N UU AJ*(2)	6	219 212	LME 254058 UU OP* LME 254058 N UU OP*(2)	5	195 181	25	+11	40	0 -11	58		44.1		1.85	37.5 2	12.5	60	15	920	974	1 780	2 280
30		_ME 304768 UU*	6	338	LME 304768 UU AJ*	6	333	LME 304768 UU OP*	5	309	30	- 1	47		68		52.1		1.85	44.5 2	12.5	50		1 350	1 430	2 500	3 200
		_ME	6	325 712	LME 304768 N UU AJ* LME 406280 UU AJ*	6	320 701	LME 304768 N UU OP* LME 406280 UU OP*	5	272 665						0 -300		0 -300									
40		_ME 406280 N UU*	6	705	LME 406280 N UU AJ*	6	694	LME 406280 N UU OP*	5	600	40		62	0	80		60.6		2.15	59 3	16.8	50	17	2 030	2 150	3 620	4 640
50		_ME 5075100 UU* _ME 5075100 N UU*		1 147 1 130	LME 5075100 UU AJ*		1 127 1 110	LME 5075100 UU OP* LME 5075100 N UU OP*	5	1 080 970	50	+13 - 2	75	-13	100		77.6		2.65	72 3	21	50	17	3 940	4 180	7 130	9 120
60	+	_ME 6090125 UU*		2 051	LME 6090125 UU AJ*		2 001	LME 6090125 UU OP*	5	1 900	60	_	90		125		101.7	0	3.15	86.5 3	27.2	54		4 760	5 040	8 150	10 400
00	_	ME 6090125 N UU*		2 050	LME 6090125 N UU AJ*		2 000	LME 6090125 N UU OP*	5	1 580		+16		-15		-400		-400					20				
80	L	_ME80120165 UU*	6	5 030	LME80120165 UU AJ*	6	4 930	LME80120165 UU OP*	5	4 210	80	- 4	120		165		133.7		4.15	116 3	36.3	54		8 710	9 220	14 500	18 500


Notes (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C₁ dimension.

(2) The seal is slightly off from the external cylinder end.

Remarks 1. High carbon steel-made retainer (shaft diameter 8 mm), and standard type and adjustable clearance type (shaft diameter 12 mm to 60 mm) end plates are fixed with stop ring for holes.

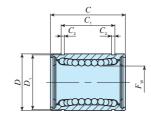
2. The identification numbers with * are our semi-standard items.

	St	anda	rd typ	ре	Adjust	table cl	earanc	e type		Open	type	
		LME	3N		_	_MB·		-	_	MB··	· OI	
Shape		0	2			9				0		
Oh-th	6.350	9.525	12.700	15.875	6.350	9.525	12.700	15.875	-	_	12.700	15.875
Shaft diameter	19.050	25.400	31.750	38.100	19.050	25.400	31.750	38.100	19.050	25.400	31.750	38.100
diameter	50.800	63.500	76.200	101.600	50.800	63.500	76.200	101.600	50.800	63.500	76.200	101.600

LMB···AJ

LMB 406080 AJ LMB 487296 AJ LMB 6496128 AJ

						lo	dentifica	ion n	umber							Noi	ninal di	mensior	ns and	oleranc	es inch	ı/mm			Eccen	tricity	Basic dy load r		Basic load r	
Shaft diameter mm	Star	ndard type	II raceway	Mass (Ref.)	Adjusta	able clea	arance typ	2	Mass (Ref.)		Open type	II raceway	Mass (Ref.)	F_{w}	Dim. FV		Dim. D	C	Dim. C	$C_{\lambda}(1)$	Dim. C_1 tolerance	C_2	D_1 h	$E = \begin{bmatrix} E \end{bmatrix}$	Maxin α μ	m	Load irection A	Load direction B	Load	Load direction B
(inch)			Ball	g					g g			Ball	g		P H		μm		μm		μm				Degree P	Н	N	N	N	N
6.350	LMB	4812 *	4	10.5				-	-			_	_	1/4		1/2	0	3/4		12.98	١,	0.992	11.906	- _			82.6	94.9	168	238
(1/4)	LMB	4812 N*	4	8.5	LMB	48	812 N A	J* 4	8					6.350		12.70	0 -11	19.050)	12.50		J.552	11.300 1				02.0	54.5	100	
9.525	LMB	61014 *	4	16.5			_	-	-			_	_	3/8		5/8		7/8		16.15		0.992	14.935	- _	_		94.8	109	174	246
(3/8)	LMB	61014 N*	4	12.5	LMB		014 N A	J* 4	12					9.525	1 0	0 15.87	_	22.225	5				1		8	12	- 110			
12.700	LMB	81420 *	4	37.5	LMB	814			36.5	LMB			28	1/2	- 6-			1 ¹ / ₄	0	24.46	0	1.168	20.853 1.	5 7.9			264	303	505	714
(1/2)	LMB	81420 N*	4	37	LMB		420 N A	J* 4	36	LMB			27	12.700		22.22	₅ –13	01.700			-200									
15.875 (5/8)	LMB	101824 *	4	79.6	LMB	1018			77.6	LMB			64	5/8		1 ¹ /8		11/2		28.04		1.422	26.899 1.	5 9.5	80		424	488	766	1 080
	LMB	101824 N*	4	76	LMB		824 N A		74	LMB			57	15.875		28.57	5	38.100)											
19.050 (3/4)	LMB	122026 *	5	99.5	LMB	1220							86	3/4		11/4		15/8	_	29.61		1.422	29.870 1.	5 11.1	60		554	659	1 000	1 470
	LMB	122026 N*	5	95	LMB		026 N A			LMB			76	19.050	0 - 7 -1	0 31.75		41.275 2 ¹ / ₄							10	15				
25.400 (1)	LMB	162536 * 162536 N*	6	207 200	LMB	1625				LMB			190 170	25.400		39.68		57.150		44.57		1.727	37.306 1.	5 14.3	50		923	978	1 780	2 280
	LMB	203242 *	6	434	LMB	2032				LMB			390	11/4		29.00	0	25/8	,		-									
31.750 (1 ¹ / ₄)	LMB		6	421	LMB		242 N A			LMB			375	31.750		50.80	0	66.675	5	50.92		1.727	47.904 2.	5 15.9	50		1 370	1 450	2 510	3 210
38.100	LMB	243848 *	6	662	LMB					LMB		5	610	11/2		0 23/8	-19								12	20				
(1 ¹ / ₂)	LMB		6	646	LMB					LMB			595	38.100	- 8 -1		5	76.200	300	61.26	-300	2.184	56.870 3	19.1	50		2 010	2 130	3 610	4 620
50.800	LMB	324864 *	6	1 185	LMB	3248	864 A	l* 6	1 165	LMB		5	1 120	2		3		4												
(2)	LMB	324864 N*	6	1 140	LMB	3248	864 N A	J* 6	1 120	LMB	324864 N OP*	5	980	50.800		76.20	0	101.600		81.07	1	2.616	72.085 3	25.4	50		3 960	4 190	7 140	9 130
63.500		400000 #							2.500			_	2 222	21/2		33/4	0	5		400.00				0.1.0			5.100	5 400		
(21/2)	LMB	406080 *	6	2 600	LMB	4060	080 A	I* 6	2 560	LMB	406080 OP*	5	2 230	63.500	0	0 95.25	0 -22	127.000		100.99		3.048	90.220 3	31.8	50 17	25	5 190	5 490	9 090	11 600
76.200 (3)	LMB	487296 *	6	4 380	LMB	4872	296 A	J* 6	4 350	LMB	487296 OP*	5	3 750	3 76.200	- 9 -1	5 4 ¹ / ₂ 114.30	0	6 152.400	0 0	120.04	0	3.048	109.474 3	38.1	50		8 620	9 120	14 500	18 500
101.600	LMB	6496128 *	6	10 200	LMB	64961	128 A	J* 6	10 150	LMB	6496128 OP*	5	8 740	4 101.600	0 -10 -2	0 6 0 152.40	0 0 -25	8 203.200	-400 0	158.95	-400	3.53	145.923 3	50.8	50 20	30 1	7 000	18 000	28 600	36 500


Notes (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1

Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

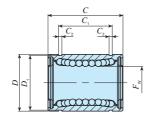
- 2. High carbon steel-made retainer (shaft diameter 6.350 mm and 9.525 mm), and standard type and adjustable clearance type (shaft diameter 12.700 mm to 50.800 mm) end plates are fixed with stop ring for holes.
- 3. The identification numbers with * are our semi-standard items.

IXU Linear Bushing Stainless Steel Made

	S	tanc	lard	type	•	Adju	stable	clea	rance	type		Ope	en ty	ре	
			۱۰۰۰۷ ۱۰۰۰	F			LM:	-	AJ AJ			LM·	·· F	OP OP	
Shape		9					9					0			
Ol (1	6	8	10	12	13	6	8	10	12	13	_	_	10	12	13
Shaft diameter	16	20	25	30	35	16	20	25	30	35	16	20	25	30	35
diameter	40	50	60			40	50	60			40	50	60		

LM…F AJ

					Identificatio	n numb	per							Nomi	nal dir	nension	s and to	oleranc	es m	m			Ecce	ntricity	Basic dy load r		Basic load r	
	haft meter	Standard type	ıll raceway	Mass (Ref.)	Adjustable clearance type	ıll raceway	Mass (Ref.)	Open type	III raceway	Mass (Ref.)		Dim. Fw tolerance μm		Dim. D tolerance	C	Dim. C tolerance	((')	Dim. C_1 olerance	C_2	D_1	h	E o	μ		Load direction A		Load direction A	Load direction B
n	nm		Ball	g		Ball	g		Ball	g		PH		μm		μm		μm				Deg	ree P	H	N	N	N	N
	6	LM 61219 F LM 61219 N F	4	8 7.6	 LM 61219 N F AJ*	4	- 7.5		-	_	6		12		19		13.5		1.1	11.5	1	- -			80.7	92.7	167	237
		LM 81517 F LM 81517 N F	4	13 10.4	 LM 81517 N F AJ*	_ 4	- 10		_	_	8		15	0 -11	17	•	11.5		1.1	14.3	1	_ -			87.4	100	160	226
	8	LM 81524 F LM 81524 N F	4	18	LM 81524 N F AJ*	_ _ 4	-		_	_	8		15		24		17.5		1.1	14.3	-	_ -			121	139	255	361
		LM 101929 F	4	15 33.8	LIVI 01524 N F AJ	4	14.7			_											_							
-	10	LM 101929 N F	4	26.8	LM 101929 N F AJ*	4	26.2	LM 101929 N F OP*	3	20.8	10	0 0			29	0	22	0	1.3	18	1	6.8 8	8	12	179	206	354	501
		LM 122130 F	4	32.2	LM 122130 F AJ*	4	31.5	LM 122130 F OP*	3	25				1 1		-200		-200			•	0.0 0						
•	12	LM 122130 N F	4	30.4	LM 122130 N F AJ*	4	29.7	LM 122130 N F OP*	3	24.5	12		21	0	30		23		1.3	20	1.5	8 8)		259	298	503	711
		LM 132332 F	4	43	LM 132332 F AJ*	4	42	LM 132332 F OP*	3	31	10			-13											222	222	500	710
	13	LM 132332 N F	4	42.5	LM 132332 N F AJ*	4	41.5	LM 132332 N F OP*	3	31	13		23		32		23		1.3	22	1.5	9 8)		266	306	506	716
	16	LM 162837 F	4	70	LM 162837 F AJ*	4	69.5	LM 162837 F OP*	3	58	16		28		37		26.5		1.6	27	1.5 1	1 8			426	489	766	1 080
	10	LM 162837 N F	4	69	LM 162837 N F AJ*	4	68	LM 162837 N F OP*	3	52	10		20		31		20.5		1.0	21	1.5	1 0			420	409	700	1 000
	20	LM 203242 F	5	92	LM 203242 F AJ*	5	91	LM 203242 F OP*	4	79	20		32		42		30.5		16	30.5	1.5 1	1 6	,		562	668	1 010	1 470
		LM 203242 N F	5	87	LM 203242 N F AJ*	5	85	LM 203242 N F OP*	4	69							00.0		1.0	00.0					002	000	1 010	
:	25	LM 254059 F	6	226	LM 254059 F AJ*	6	222	LM 254059 F OP*	5	203	25	0 0		0	59		41		1.85	38	2 1	2 5	10	15	920	974	1 780	2 280
		LM 254059 N F	6	220	LM 254059 N F AJ*	6	216	LM 254059 N F OP*	5	188		-/ -10		-16														
;	30	LM 304564 F	6	253	LM 304564 F AJ*	6	250	LM 304564 F OP*	5	228	30		45		64		44.5		1.85	43	2.5 1	5 5)		1 460	1 540	2 780	3 560
		LM 304564 N F LM 355270 F	6	250 387	LM 304564 N F AJ*	6	245 380	LM 304564 N F OP* LM 355270 F OP*	5	210 355																		
;	35	LM 355270 F	6	380	LM 355270 F AJ*	6	375	LM 355270 F OP*	5	335	35		52		70	0	49.5	0	2.1	49	2.5 1	7 5)		1 610	1 710	3 080	3 940
		LM 406080 F	6	596	LM 406080 F AJ*	6	585	LM 406080 F OP*	5	546		0 0		0		-300		-300										
4	40	LM 406080 N F	6	585	LM 406080 N F AJ*	6	579	LM 406080 N F OP*	5	500	40	-8 -12	1 60	-19	80		60.5		2.1	57	3 2	0 5	12	20	2 030	2 150	3 620	4 640
		LM 5080100 F	6	1 615	LM 5080100 F AJ*	6	1 595	LM 5080100 F OP*	5	1 420	50		0.0	1	100		7.4		0.0	70.5					2.040	4.400	7.400	0.400
*	50	LM 5080100 N F	6	1 580	LM 5080100 N F AJ*	6	1 560	LM 5080100 N F OP*	5	1 340	50		80		100		74		2.6	76.5	3 2	5 5)		3 940	4 180	7 130	9 120
	60	LM 6090110 F	6	1 817	LM 6090110 F AJ*	6	1 788	LM 6090110 F OP*	5	1 650	60	0 0	1 an	0	110		85		3 15	86.5	3 3	0 5) 17	25	4 760	5 040	8 150	10 400
	00	LM 6090110 N F	6	1 787	LM 6090110 N F AJ*	6	1 757	LM 6090110 N F OP*	5	1 610	00	-9 -15	90	-22	110		00		5.15	00.0	3 3	5) 1/	25	4 / 00	3 040	0 100	10 400


Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1

Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

- 2. Standard type and adjustable clearance type end plates are fixed with stop ring for holes.
- 3. The identification numbers with * are our semi-standard items.

Linear Bushing (Stainless Steel Made) (With Seal)

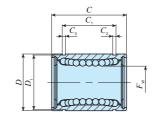
	S	tanc	dard	type	•	Adju	stable	clea	rance	type		Ope	en ty	ре	
		LM·	·· F	UU		_	M···· M····		JU A			М… И…	FU	ט מר אר	
Shape		9	V.				9					0			
01 (1	6	8	10	12	13	6	8	10	12	13	_	_	10	12	13
Shaft diameter	16	20	25	30	35	16	20	25	30	35	16	20	25	30	35
diameter	40	50	60			40	50	60			40	50	60		

LM…FUU

LM···FUU AJ

LM···FUU OP

					Identification n	umbe	er								Nomi	nal di	mensio	ns and	toleran	ces m	ım			E	ccentricity	Basic o	•	Basic load r	
Sha	ter	Standard type	all raceway	Mass (Ref.)	Adjustable clearance type	all raceway	Mass (Ref.)	Open type	all raceway	Mass (Ref.)	$oxed{F_{ m w}}$	tol	m. Fw erance μm	D	Dim. D tolerance	1 C	Dim. C	(C.(1)	Dim. C_1 tolerance	1 (D_1	h	E	α	Maximum µm	Load direction A	Load direction B		Load direction B
mr	_		Ball	g		Ball	9		Ball	9		P	Н		μm		μm		μm					Degree	PH	N	N	N	N
6		M 61219 F UU M 61219 N F UU	4	8 7.6	 LM 61219 N F UU AJ*	4	- 7.5		-	_	6	5		12		19		13.5		1.1	11.5	- 1	_	-		80.7	92.7	167	237
		M 81517 F UU M 81517 N F UU	4 4	13 10.4	 LM 81517 N F UU AJ*	- 4	_ 10		_	_	8	3		15	0 -11	17		11.5		1.1	14.3	- 1	-	-		87.4	100	160	226
3		.M 81524 F UU .M 81524 N F UU	4 4	18 15	 LM 81524 N F UU AJ*	_ 4	- 14.7		_	_	8	3		15		24		17.5		1.1	14.3	- 1	_	_		121	139	255	361
10	L	M 101929 F UU M 101929 N F UU	4	33.8	LM 101929 N F UU AJ*	_	_	 LM 101929 N F UU OP*	_ 3	- 20.8	10) _	0 0	19		29		22		1.3	18	-	- 6.8	- 80	8 12	179	206	354	501
12	L	M 122130 F UU	4	32.2	LM 122130 F UU AJ*	4		LM 122130 F UU OP*	3	25	12			21		30	0 	23	0 	1.3	20	1.5	8	80		259	298	503	711
	L	M 122130 N F UU M 132332 F UU	4	30.4 43	LM 122130 N F UU AJ* LM 132332 F UU AJ*		29.7 42	LM 122130 N F UU OP* LM 132332 F UU OP*	3	24.5	10			00	0 -13	00	_	00	-	1.0	00	4.5		00		000	000	500	74.0
13		M 132332 N F UU	4	42.5	LM 132332 N F UU AJ*	4	41.5	LM 132332 N F UU OP*	3	31	13			23		32		23		1.3	22	1.5	9	80		266	306	506	716
16		M 162837 F UU M 162837 N F UU	4	70 69	LM 162837 F UU AJ*		69.5 68	LM 162837 F UU OP* LM 162837 N F UU OP*	3	58 52	16	5		28		37		26.5		1.6	27	1.5	11	80		426	489	766	1 080
20		.M 203242 F UU .M 203242 N F UU	5 5	92 87	LM 203242 F UU AJ* LM 203242 N F UU AJ*		91 85	LM 203242 F UU OP* LM 203242 N F UU OP*	4	79 69	20)		32		42		30.5		1.6	30.5	1.5	11	60		562	668	1 010	1 470
25	L	M 254059 F UU	6	226	LM 254059 F UU AJ*	6	222	LM 254059 F UU OP*	5	203	25	5	0 0 7 -10	40	0 -16	59		41		1.85	38	2	12	50	10 15	920	974	1 780	2 280
30	L	M 254059 N F UU M 304564 F UU	6	220 253	LM 254059 N F UU AJ*		216 250	LM 254059 N F UU OP*	5	188 228	30		7 - 10	45	-16	64	_	44.5	-	1.85	12	2.5	15	50		1 460	1 540	2 780	3 560
30		M 304564 N F UU	6	250	LM 304564 N F UU AJ*	6	245	LM 304564 N F UU OP*	5	210	30			45		04		44.5		1.03	40	2.5	15	30		1 400	1 540	2 100	3 300
38		M 355270 F UU M 355270 N F UU	6	387 380	LM 355270 F UU AJ* LM 355270 N F UU AJ*		380 375	LM 355270 F UU OP* LM 355270 N F UU OP*	5 5	355 335	35	5		52		70	0	49.5	0	2.1	49	2.5	17	50		1 610	1 710	3 080	3 940
40		M 406080 F UU M 406080 N F UU	6	596 585	LM 406080 F UU AJ* LM 406080 N F UU AJ*		585 579	LM 406080 F UU OP* LM 406080 N F UU OP*	5 5	546 500	40) _	0 0 8 -12	60	0 -19	80	-300	60.5	-300	2.1	57	3	20	50	12 20	2 030	2 150	3 620	4 640
50	L	M 5080100 F UU M 5080100 N F UU	6	1 615 1 580	LM 5080100 F UU AJ*	6	1 595 1 560	LM 5080100 F UU OP* LM 5080100 N F UU OP*	5	1 420 1 340	50)		80		100		74		2.6	76.5	3	25	50		3 940	4 180	7 130	9 120
60	L	M 6090110 F UU M 6090110 N F UU	6	1 817 1 787	LM 6090110 F UU AJ*	6	1 788 1 757	LM 6090110 F UU OP*	5	1 650 1 610	60) _	0 0	90	0 -22	110		85		3.15	86.5	3	30	50	17 25	4 760	5 040	8 150	10 400


Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1

Remarks 1. "P" and "H" in Dim. $F_{\rm w}$ tolerance and Eccentricity represent precision and high, respectively.

- 2. Standard type and adjustable clearance type end plates are fixed with stop ring for holes.
- 3. The identification numbers with * are our semi-standard items.

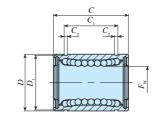
IXU Linear Bushing Stainless Steel Made

	S	tand	dard	type	•	Adju	stable	clea	rance	type		Op	en ty	/ре	
			E…I	F N F			LME LME	N	F AJ F A		_	ME ME	N	F OF F OF	
Shape									0						
Shaft	5										_	_	12	16	20
diameter	25	30	40	50	60	25	30	40	50	60	25	30	40	50	60

LME…F

LME…F AJ

LM	E٠٠	٠F	O


					Identificatio	n nun	mber							Non	ninal o	dimensi	ons and	toleran	ces m	m			Eccentricit		dynamic rating		static rating
Shaft diamete mm	Standard ty		Ball raceway	Mass (Ref.)	Adjustable clearance type	Ball raceway	Mass (Ref.)	Open type	Ball raceway	Mass (Ref.)	$F_{ m w}$	Dim. Fw tolerance	/)	Dim. D tolerance μ m	C	Dim. C tolerance µm	$C_1^{(1)}$	Dim. C_1 tolerance μ m	C_2	D_1	h	E Deg	Maximur	Load direction A N	C Load direction B	Load	Load direction B
5	LME 51222	N F*	4	11	LME 51222 N F AJ*	4	9.5		-	_	5		12		22		14.5		1.1	11.5	1	_ -		90.8	104	219	310
8	LME 81625		4	20 20	 LME 81625 N F AJ*	- 4	- 19.5		_	_	8	+ 8	16	- 8	25		16.5		1.1	15.2	1	_		121	139	255	361
12	LME 122232	-	4	41.5 40	LME 122232 F AJ* LME 122232 N F AJ*	4	40.5 39	122232 F OP ³ 122232 N F OP ³		32 30	12		22	0	32	0 -200	22.9	0 -200	1.3	21	1.5	7.5	3 12	259	298	503	711
16	LME 162636		4	56.5 55	LME 162636 F AJ* LME 162636 N F AJ*	4	55.5 54	162636 F OP		48 46	16	+ 9	26	- 9	36	-200	24.9	-200	1.3	24.9	1.5	10 7	3	283	325	514	726
20	LME 203245		5 5	97 91	LME 203245 F AJ* LME 203245 N F AJ*	5 5	96 90	203245 F OP ²		84 75	20	- 1	32		45		31.5		1.6	30.3	2	10 6)	562	668	1 010	1 470
25	LME 254058		6	222 215	LME 254058 F AJ* LME 254058 N F AJ*	6 6	219 212	254058 F OP ²		195 181	25	+11	40	0 -11	58		44.1		1.85	37.5	2	12.5 6	15	920	974	1 780	2 280
30	LME 304768		6	338 325	LME 304768 F AJ* LME 304768 N F AJ*	6 6	333 320	304768 F OP		309 272	30	- 1	47		68	0	52.1	0	1.85	44.5	2	12.5 5)	1 350	1 430	2 500	3 200
40	LME 406280		6	712 705	LME 406280 F AJ* LME 406280 N F AJ*	6 6	701 694	406280 F OP		665 600	40		62	0	80	-300	60.6	-300	2.15	59	3	16.8 5		2 030	2 150	3 620	4 640
50	LME 5075100		6 6	1 147 1 130	LME 5075100 F AJ* LME 5075100 N F AJ*	6 6	1 127 1 110	5075100 F OP ³		1 080 970	50	+13	75	-13	100		77.6		2.65	72	3	21 5	17	3 940	4 180	7 130	9 120
60	LME 6090125		6	2 051 2 050	LME 6090125 F AJ* LME 6090125 N F AJ*	6 6	2 001 2 000	6090125 F OP ³		1 900 1 580	60		90	0 -15	125	0 -400	101.7	0 -400	3.15	86.5	3	27.2 5	20	4 760	5 040	8 150	10 400

Note (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1 dimension.

Remarks 1. Stainless steel-made retainer (shaft diameter 8 mm), and standard type and adjustable clearance type (shaft diameter 12 mm to 60 mm) end plates are fixed with stop ring for holes.

2. The identification numbers with * are our semi-standard items.

	S	Standard type				Adju	stable	clea	rance	type	Open type						
	LME··· F UU LME···N F UU						NE	· F ·N F	UU A			ΛΕ···		UU (
Shape		9	V.				9					0					
Shaft	5	8	12	16	20	5	8	12	16	20	_	_	12	16	20		
diameter	25	30	40	50	60	25	30	40	50	60	25	30	40	50	60		

LME...FUU

LME···FUU AJ

		Identification number						Nominal dimensions and tolerances mm						Eccentricity	Basic o	ynamic rating											
Sh diam m	neter	Standard type	Ball raceway	Mass (Ref.)	Adjustable clearance type	Ball raceway	Mass (Ref.)	Open type	Ball raceway	Mass (Ref.)	$F_{ m w}$	Dim. Fw tolerance μm	/)	Dim. D tolerance µm	C = 1	Dim. Colerance	((1)	Dim. C_1 tolerance μ m	C_2	D_1	h	E α	Maximum ee μm	Load direction A N	Load direction B N	Load	Load direction B
	5	LME 51222 N F UU*	4	11	LME 51222 N F UU AJ*	4	9.5		-	_	5		12		22		14.5		1.1	11.5	1	_ _		90.8	104	219	310
	8	LME 81625 F UU* LME 81625 N F UU*	4 4	20 20	 LME 81625 N F UU AJ*	4	- 19.5		-	-	8	+ 8	16	- 8	25		16.5		1.1	15.2	- 1	_ -		121	139	255	361
1	2	LME 122232 F UU* LME 122232 N F UU*	4 4	41.5 40	LME 122232 F UU AJ* LME 122232 N F UU AJ*	4	40.5 39		3	32 30	12		22	0	32	0	22.9	0	1.3	21	1.5	7.5 78	12	259	298	503	711
1	6	LME 162636 F UU*	4 4	56.5 55	LME 162636 F UU AJ* LME 162636 N F UU AJ*	4 4	55.5 54		3	48 46	16	+ 9	26	- 9	36	-200	24.9	-200	1.3	24.9	1.5	10 78		283	325	514	726
2	0	LME 203245 F UU* LME 203245 N F UU*	5 5	97 91	LME 203245 F UU AJ* LME 203245 N F UU AJ*	5 5	96 90	LME 203245 F UU OP* LME 203245 N F UU OP*	4	84 75	20	- 1	32		45		31.5		1.6	30.3	2	10 60		562	668	1 010	1 470
2	5	LME 254058 F UU* LME 254058 N F UU*(2)	6	222 215	LME 254058 F UU AJ* LME 254058 N F UU AJ*(2)	6	219 212		5	195 181	25	+11	40	0 -11	58		44.1		1.85	37.5	2	12.5 60	15	920	974	1 780	2 280
3	0	LME 304768 F UU* LME 304768 N F UU*	6	338 325	LME 304768 F UU AJ* LME 304768 N F UU AJ*	6	333 320		5	309 272	30	- 1	47		68	0	52.1	0	1.85	44.5	2	12.5 50		1 350	1 430	2 500	3 200
4	0	LME 406280 F UU* LME 406280 N F UU*	6	712 705		6	701 694		5	665 600	40		62	0	80	-300	60.6	-300	2.15	59	3	16.8 50		2 030	2 150	3 620	4 640
5	0	LME 5075100 F UU* LME 5075100 N F UU*		1 147 1 130			1 127 1 110		5 5	1 080 970	50	+13	75	-13	100		77.6		2.65	72	3	21 50	17	3 940	4 180	7 130	9 120
6	0	LME 6090125 F UU* LME 6090125 N F UU*		2 051 2 050			2 001 2 000			1 900 1 580	60		90	0 -15	125	0 -400	101.7	0 -400	3.15	86.5	3	27.2 54	20	4 760	5 040	8 150	10 400

Notes (1) The width of hub for fixing with circlip should be the value obtained by subtracting a circlip width value times two from the C_1 dimension.

(2) The seal is slightly off from the external cylinder end.

Remarks 1. Stainless steel-made retainer (shaft diameter 8 mm), and standard type and adjustable clearance type (shaft diameter 12 mm to 60 mm) end plates are fixed with stop ring for holes.

2. The identification numbers with * are our semi-standard items.

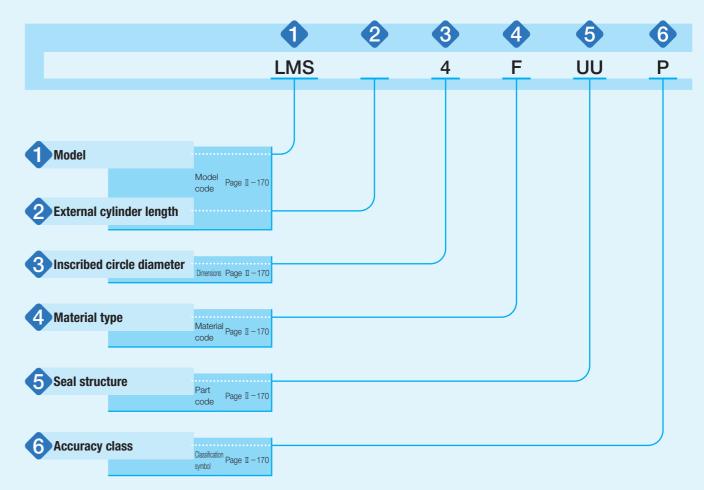
Points

Compact design

The ultra-small size allows for compact machine and device design.

Wide variation

As the lineup of two types of external cylinder length are available, i.e. standard and long, you can select an optimal Linear Bushing for the specifications of your machine and device

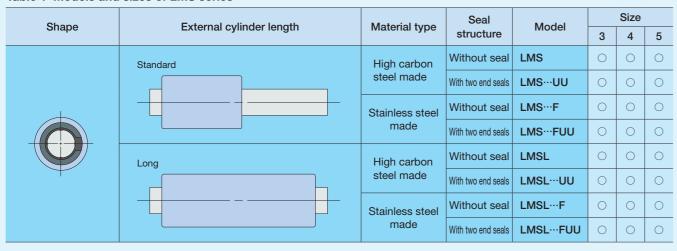

Stainless steel selections for excellent corrosion resistance

Products made of stainless steel are highly resistant to corrosion, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

Identification Number and Specification

Example of an identification number

The specification of LMS series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a material code, a part code, and a classification symbol for each specification to apply.



Identification Number and Specification

Model	Miniature Linear Bushing (LMS series)	g	: LMS
	For applicable models a	and sizes, see	Table 1.
External cylinder length	Standard Long	: No symbol	
Inscribed circle diameter			Indicate the inscribed circle diameter in mm.
4 Material type	High carbon steel made Stainless steel made	: No symbol	Specify the component part material. For applicable models and sizes, see Table 1.
Seal structure	Without seal With two end seals	: No symbol : UU	The models with two end seals incorporate seals with superior dust protection performance for preventing intrusion of foreign substances.
6 Accuracy class	High Precision	: No symbol : P	For details of accuracy, see the dimension table on page II -172. Precision applies only to the standard type. Especially when it is necessary to control clearance with the shaft strictly, the tolerance of inscribed circle diameter can be sorted by 0.002 mm before delivery. Contact IKO for further information.

II - 170

Table 1 Models and sizes of LMS series

Relationship between Load Rating and Ball Raceway _ Precaution for Use _

The load rating of LMS series varies according to the loading direction and position of ball raceway. The dimension table describes two types of values shown in Fig. 1.1 and Fig. 1.2 according to the loading direction and position of ball raceway.

Fig. 1.1 shows the case where the loading direction and ball raceway position coincides with each other, representing the loading direction A in the dimension table. Generally, this is applied when the ball raceway position cannot be specified to indeterminate direction load or loading

Fig. 1.2 shows the case where the loading direction is positioned between ball raceways, representing the loading direction B in the dimension table. Generally, this can be subjected to load bigger than loading direction A.

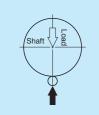


Fig. 1.1 Loading direction A

Fig. 1.2 Loading direction B

Lubrication

Grease is not pre-packed in the LMS series, so please perform adequate lubrication as needed.

Both of oil lubrication and grease lubrication are available in the LMS series. For grease lubrication, it is typically applied lightly to the shaft and each row. Use of high-quality lithiumsoap base grease is recommended for the grease to use.

Related Products

Shaft for Miniature Linear Bushing

To make full use of performance of the LMS series, we also offer shaft with high accuracy for Miniature Linear Bushing grounded after heat treatment. If you are interested, contact IKO.

Fitting of external cylinder

Recommended fit for the LMS series is indicated in Table 2. As the external cylinder is thin, use epoxy type adhesive agent for fixing to the housing hole, instead of press-fitting.

Table 2 Recommended fit

(Tolerances of dimensions for shaft and housing hole) unit: μ m

Accuracy class	Shaft	Housing hole
Lliab	- 6	+12
High	-14	0
Precision	- 4	+ 8
Precision	- 9	0

2 Raceway

LMS series operates with a shaft as a raceway surface, the shaft should be heat-treated and ground. Recommended surface hardness, roughness. and minimum effective hardening depth of shaft are indicated in Table 3.

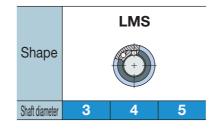
Table 3 Surface hardness, roughness, and effective hardening depth of shaft

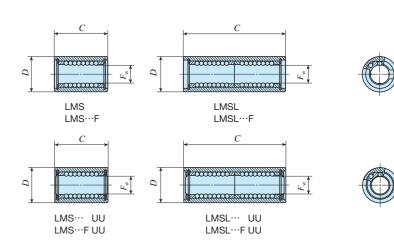
Item	Recommended value	Remark
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).
Surface roughness	0.2 μmRa or lower (0.8 μmRy or lower)	_
Effective hardening depth	0.8 mm or higher	-

Note (¹) For hardness factor, refer to Fig. 3 in page II-5.

3 When accompanied by rotational motion

LMS series units support only linear motion but do not support rotational motion. When performing rotational motion and linear motion of short stroke length, IKO Miniature Stroke Rotary Bushing is recommended to be used.


4 Insertion of shaft

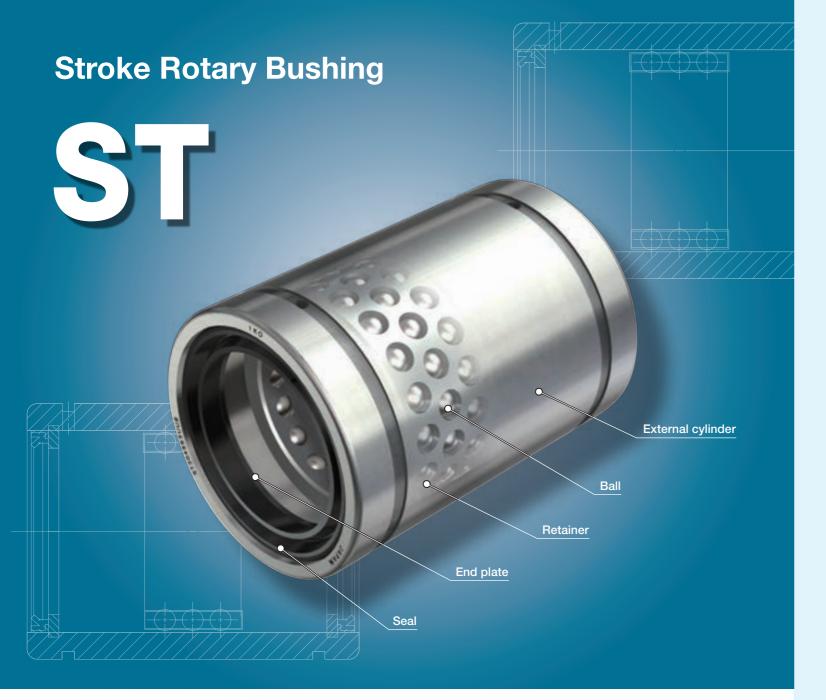

When inserting a shaft to the external cylinder, be careful not to let the shaft pried open as it may cause dropping of balls or deformation of the retainer.

6 Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

IKU Miniature Linear Bushing

Shaft diameter	Identification number	Ball raceway		No		. <i>F</i> w	nsion	Din	n. <i>D</i>	inces	mm	Eccen	•	load	lynamic rating	Basic static load rating C_0		
mm	number	Ballra	Mass (Ref.)	$F_{\rm w}$		ance m	D	toler μ P	ance m	С	Dim. C tolerance		m l H	Load	Load direction B	Load direction A	Load direction B N	
	LMS 3 LMS 3 F LMS 3 UU LMS 3 F UU		1.8		0 -5	0 - 8	7	0 -7	0 - 8	10	0 -120	2	4	48.9	56.1	37.4	52.9	
3	LMSL 3 F LMSL 3 UU LMSL 3 F UU	4	3.0	3	_	0 -10	7	_	0 -13	19	0 -300	_	5	79.5	91.4	74.8	106	
4	LMS 4 F LMS 4 F UU LMS 4 F UU	4	2.8	4	0 -5	0 - 8	8	0 -7	0 - 8	12	0 -120	2	4	58.6	67.3	47.5	67.1	
7	LMSL 4 F LMSL 4 UU LMSL 4 F UU	7	4.3	4	_	0 -10	0	_	0 -13	23	0 -300	_	5	95.3	109	94.9	134	
5	LMS 5 F LMS 5 F UU LMS 5 F UU	4	3.8	5	0 -5	0 - 8	10	0 -7	0 - 8	15	0 -120	2	4	135	155	103	146	
3	LMSL 5 F LMSL 5 F UU LMSL 5 F UU	7	6.7	3	_	0 -10	10	_	0 -13	29	0 -300	_	5	219	252	206	292	


Remark: "P" and "H" in Dim. F., tolerance and Eccentricity represent precision and high, respectively.

Stroke Rotary Bushing

Stroke Rotary Bushing
Miniature Stroke Rotary Bushing
Stroke Rotary Cage

II - 173

Points

Rotational and linear motions

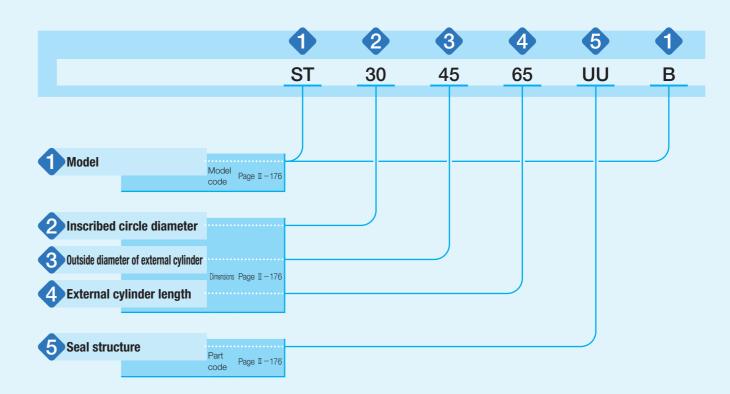
With the combination of an external cylinder with cylindrical raceway and balls incorporated in the retainer, rotary and linear motion in the axial direction is possible simultaneously with rotational motion.

Small rolling frictional resistance

By building a ball with high accuracy into the precisely polished external cylinder, a small rolling frictional resistance and extremely smooth rolling motion together with reciprocal motion have been achieved.

Small inertia

The retainer has a high rigidity and light weight so that it has small motion inertia suitable for rolling motion and reciprocal motion in the high-speed operation.


Wide variation

Ordinary type and heavy load type with different load rating are provided, and each are available with and without seals. You can select an optimal product for the specifications of your machine and device.

Identification Number and Specification

Example of an identification number

The specification of ST series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions and a part code for each specification to apply.

Identification Number and Specification

Model	Stroke Rotary Bushing (ST series)		Ordinary type Heavy load type	: ST : ST···B
	For applicable models a	and sizes, see	Table 1.	
2 Inscribed circle diameter			Indicate the inscribed of	ircle diameter in mm.
Outside diameter of external cylinder			Indicate the outside diar	meter of external cylinder in mm.
4 External cylinder length			Indicate the external cy	linder length in mm.
5 Seal structure	Open type	: No symbol	The models with seal ty	pe incorporate seals with
	With seal	: UU	superior dust protection intrusion of foreign subs	n performance for preventing

Table 1 Models and sizes of ST series

Chana	Seal	Model										Si	ze									
Shape	structure	Model	4	5	6	8	10	12	16	20	25	30	35	40	45	50	55	60	70	80	90	100
Ordinary type	Open type	ST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	With seal	STUU	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heavy load type	Open type	ST···B	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	With seal	STUUB	_	_	_	_	_	-	_	_	_	0	0	0	0	0	0	0	0	0	0	0

Accuracy

Since outside diameter of external cylinder is deformed by stop ring tension, calculate the measurement point from the equation (1) and use the average diameter value at the point.

$$W = 4 + L_{1} / 8 \cdots (1)$$

where, W: Distance from the end to measurement point P, mm (see Fig. 1)

L₁: External cylinder length, mm

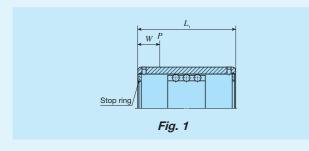


Table 2 Tolerance of inscribed circle diameter and outside diameter of external cylinder unit: μm

Nominal dimensior inscribed diameter a outside di external c	circle $F_{\rm w}$ or ameter of ylinder D	Tolerance inscribed diameter	circle	Tolerance of outside diameter of external cylinder $D_{\rm m}$ (1)						
Over	Incl.	High	Low	High	Low					
3	6	+18	+10	_	_					
6	10	+22	+13	0	- 8					
10	18	+27	+16	0	- 8					
18	30	+33	+20	0	- 9					
30	50	+41	+25	0	-11					
50	80	+49	+30	0	-13					
80	120	+58	+36	0	-15					
120	150	_		0	-18					

Note $(^1)$ $D_{\rm m}$ is an arithmetic mean value of the maximum diameter and minimum diameter obtained by two-point measurement of the outside diameter of external cylinder.

Table 3 Tolerance of external cylinder length

unit: μr

Nominal dir inscribed circ m	le diameter $F_{\scriptscriptstyle\rm w}$	Dim. L, tolerance of external cylinder length							
Over	Incl.	High	Low						
_	20	0	-200						
20	60	0	-300						
60	100	0	-400						

Allowance of Velocity ____

The ST series is capable of rotation and rotary and linear motion. However, allowance of velocity for these motions performed at the same time is obtained from the equation (2). Typical values are indicated in Table 4.

$$DN \ge D_{\text{ow}} n + 10 S n_1 \cdots (2)$$

where, DN: Allowance of velocity (see Table 4)

n: Rotational speed, min^{-1}

 n_1 : Number of strokes per minute, min⁻¹

S: Stroke length, mm

 D_{nw} : Pitch circle diameter of balls, mm ($D_{\text{nw}} = 1.15F_{\text{w}}$)

 $F_{\rm w}$: Inscribed circle diameter, mm

However, applicable when $n_1 \leq 5000$, $S n_1 \leq 50000$.

Table 4 Allowance of velocity

Lubrication conditions	DN
Oil lubrication	600 000
Grease lubrication	300 000

Lubrication

Grease is not pre-packed in the ST series, so please perform adequate lubrication as needed.

Both of oil lubrication and grease lubrication are available in the ST series. For grease lubrication, use of high-quality lithium-soap base grease is recommended. Oil is fed from the oil hole on the external cylinder.

Precaution for Use

Fitting

Recommended fit for the ST series is indicated in Table 5. As the ST series performs rotation and rotary and linear motion at the same time, the radial internal clearance must be smaller when shock load or load accompanied by vibration is applied. Especially when vertical axis application or high accuracy motion is required, it is recommended to set the radial internal clearance at zero or under a slightly-preloaded condition.

Excessive preload will shorten the life, so be careful not to set lower limit value of radial internal clearance below the value stated in Table 6.

Table 5 Recommended fit

Operational conditions	Tolerand	ce class
Operational conditions	Shaft	Housing hole
Normal operational conditions	k5, m5	H6, H7
For vertical axis or high accuracy	n5, p6	J6, J7

Table 6 Lower limit of radial internal clearanceunit: μm

Table o Lower Illini	or radial internal cit	and and
	s of inscribed circle ster $F_{\rm w}$ m	Lower limit of radial internal clearance
3	6	- 2
6	10	- 3
10	18	- 4
18	30	- 5
30	50	- 6
50	80	- 8
80	100	-10

2 Raceway

Since ST series operates with a shaft as a raceway surface, the shaft should be heat-treated and ground. Recommended values for surface hardness and roughness of the shaft are shown in Table 7 and the recommended value for the minimum effective hardening depth is shown in Table 8.

Table 7 Surface hardness and roughness of raceway

		,
Item	Recommended value	Remark
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).
Surface roughness	0.2 μ mRa or lower (0.8 μ mRy or lower)	Where accuracy standard is low, around 0.8 μ mRa (3.2 μ mRy) is also allowed.

Table 8 Minimum effective hardening depth of shaft

unit: mm

		unit. min
Shaft d	iameter	Recommended value for
Over	Incl.	minimum effective hardening depth
_	28	0.8
28	50	1.0
50	100	1.5

3 Stroke length

For stroke length used, 80% of the maximum stroke length stated in the dimension table is recommended.

Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

See Assembly operation of external cylinder and shaft

When inserting a shaft, be careful not to shock the ball. After assembling, correct the position of the retainer to be in the center of the external cylinder. After assembling the external cylinder to the housing, insert the shaft softly. Move the retainer as well as the shaft until they contact one side of the surface and stop. Then push the shaft not to damage balls or raceway to the position a half of the maximum stroke length and return it by the same length (a half of the maximum stroke) so that the retainer is positioned regularly at the center of the external cylinder.

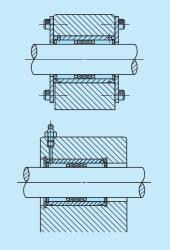
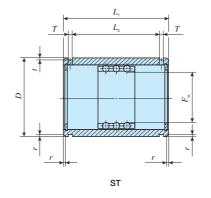
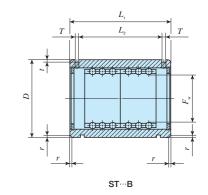
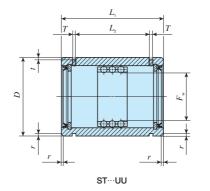
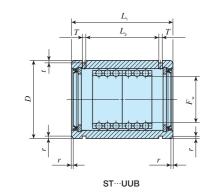




Fig. 2 Mounting examples

IXI Stroke Rotary Bushing Open Type

		Or	din	ary	/ ty	ре		Heavy load type							
				ST				ST···B							
Shape		(000					(
		5				12		_	_	_			12		
Size	20	25	30	35	40	45	50	20	25	30	35	40	45	50	
	55	60	70	80	90	100		55	60	70	80	90	100		





			Identificati	on number		Nominal dimensions								ST		ST···B			
Ch.	-#							r	mm					Maximum stroke length	Basic dynamic load rating	Basic static load rating	Maximum stroke length	Basic dynamic load rating	Basic static load rating
Sh diam	eter	Ordinary type	Mass (Ref.)	Heavy load type	Mass (Ref.)	E	D	ī	1		T			Stroke length	C	C_{\circ}	Stroke length	C	C_0
m	m		g		g	F _w		L ₁	L_2		I	l l	r	mm	N	N	mm	N	N
	4	ST 4814	2.9			4	8	14	9		1.1	0.25	0.3	10	112	59.5			
	5	ST 51016	5.6			5	10	16	10.6		1.1	0.25	0.3	13	121	68.3			
	6	ST 61219	8.9			6	12	19	13.2		1.1	0.25	0.3	15	278	168			
	8	ST 81524	15.6	ST 81524 B	16.8	8	15	24	17.1		1.5	0.5	0.5	24	315	211	8	512	422
1	0	ST 101930	28.8	ST 101930 B	31.2	10	19	30	22.7		1.5	0.5	0.5	30	659	466	8	1 070	932
1	2	ST 122332	42	ST 122332 B	46	12	23	32	24.5		1.5	0.5	0.5	32	1 110	822	8	1 800	1 640
1	6	ST 162837	71	ST 162837 B	75	16	28	37	29.1		1.5	0.5	0.5	41	1 230	998	16	1 990	2 000
2	20	ST 203245	99	ST 203245 B	106	20	32	45	35.8		2	0.5	0.5	55	1 390	1 250	28	2 250	2 500
2	25	ST 253745	117	ST 253745 B	125	25	37	45	35.8		2	0.5	1	55	1 450	1 430	28	2 360	2 850
3	0	ST 304565	205	ST 304565 B	220	30	45	65	53.5		2.5	0.5	1	82	3 110	3 160	44	5 060	6 320
3	5	ST 355270	329	ST 355270 B	346	35	52	70	58.5		2.5	0.7	1.5	92	3 290	3 550	54	5 340	7 100
4	0	ST 406080	516	ST 406080 B	540	40	60	80	68.3		2.5	0.7	1.5	108	4 340	4 810	66	7 050	9 630
4	5	ST 456580	563	ST 456580 B	588	45	65	80	68.3		2.5	0.7	1.5	108	4 550	5 330	66	7 390	10 700
5	0	ST 5072100	827	ST 5072100 B	862	50	72	100	86.4		3	1	1.5	138	5 790	6 970	88	9 400	13 900
5	55	ST 5580100	1 160	ST 5580100 B	1 200	55	80	100	86.4		3	1	2	138	6 030	7 630	88	9 800	15 300
6	0	ST 6085100	1 240	ST 6085100 B	1 290	60	85	100	86.4		3	1	2	138	6 260	8 300	88	10 200	16 600
7	0	ST 7095100	1 400	ST 7095100 B	1 450	70	95	100	86.4		3	1	2	138	6 510	9 320	88	10 600	18 600
	0	ST 80110100	2 050	ST 80110100 B	2 110	80	110	100	86		3	1.5	2	132	8 230	12 200	76	13 400	24 400
9	0	ST 90120100	2 250	ST 90120100 B	2 330	90	120	100	86		3	1.5	2	132	8 550	13 500	76	13 900	27 000
10	0	ST 100130100	2 440	ST 100130100 B	2 520	100	130	100	86		3	1.5	2	132	8 820	14 800	76	14 300	29 500

IXU Stroke Rotary Bushing With Seal

		Orc	lina	ry t	ype		Heavy load type							
		,	ST··	·UL	J		ST···UUB							
Shape														
	8	10	12	16	20	25	_	_	_	_	_	_		
Size	30	35	40	45	50	55	30	35	40	45	50	55		
	60	70	80	90	100		60	70	80	90	100			

			Identifica	ation number		Nominal dimensions									STUU		STUUB		
Shaf		Ordinanthuna	Mass (Dof.)	l Hagyay lood type	Mass (Dof.)	1	I	r	mm	ı				Maximum stroke length	Basic dynamic load rating	Basic static load rating	Maximum stroke length	Basic dynamic load rating	Basic static load rating
diame	er	Ordinary type	Mass (Ref.)	Heavy load type	Mass (Ref.)	$F_{_{\mathrm{w}}}$	D	L.	L_{2}		T	t	r	ou one longui	C	C_0	ou one rengan	C	C_0
mm			g		g	w		,	2					mm	N	N	mm	N	N
8	S	T 81524 UU	16.5			8	15	24	12.3	1	1.5	0.5	0.5	14	315	211			
10	S	T 101930 UU	30.7			10	19	30	15.5	1	1.5	0.5	0.5	16	659	466			
12	S	T 122332 UU	45			12	23	32	17.1	1	1.5	0.5	0.5	17	1 110	822			
16	S	T 162837 UU	74			16	28	37	21.1	1	1.5	0.5	0.5	25	1 230	998			
20	S	T 203245 UU	107			20	32	45	26.8	2	2	0.5	0.5	37	1 390	1 250			
25	S	T 253745 UU	121			25	37	45	26.8	2	2	0.5	1	37	1 450	1 430			
30	S	T 304565 UU	215	ST 304565 UU B	230	30	45	65	45.1	2	2.5	0.5	1	65	3 110	3 160	27	5 060	6 320
35	S	T 355270 UU	342	ST 355270 UU B	359	35	52	70	50.1	2	2.5	0.7	1.5	75	3 290	3 550	37	5 340	7 100
40	S	T 406080 UU	529	ST 406080 UU B	553	40	60	80	59.9	2	2.5	0.7	1.5	91	4 340	4 810	49	7 050	9 630
45	S	T 456580 UU	577	ST 456580 UU B	602	45	65	80	59.9	2	2.5	0.7	1.5	91	4 550	5 330	49	7 390	10 700
50	S	T 5072100 UU	836	ST 5072100 UU B	871	50	72	100	77.4	3	3	1	1.5	120	5 790	6 970	70	9 400	13 900
55	S	T 5580100 UU	1 190	ST 5580100 UU B	1 230	55	80	100	77.4	3	3	1	2	120	6 030	7 630	70	9 800	15 300
60	S	T 6085100 UU	1 270	ST 6085100 UU B	1 320	60	85	100	77.4	3	3	1	2	120	6 260	8 300	70	10 200	16 600
70	S	T 7095100 UU	1 430	ST 7095100 UU B	1 480	70	95	100	77.4	3	3	1	2	120	6 510	9 320	70	10 600	18 600
80	S	T 80110100 UU	2 080	ST 80110100 UU B	2 140	80	110	100	77	3	3	1.5	2	114	8 230	12 200	58	13 400	24 400
90	S	T 90120100 UU	2 290	ST 90120100 UU B	2 370	90	120	100	77	3	3	1.5	2	114	8 550	13 500	58	13 900	27 000
100	S	T 100130100 UU	2 540	ST 100130100 UU B	2 620	100	130	100	77	3	3	1.5	2	114	8 820	14 800	58	14 300	29 500

Points

Rotational and linear motions

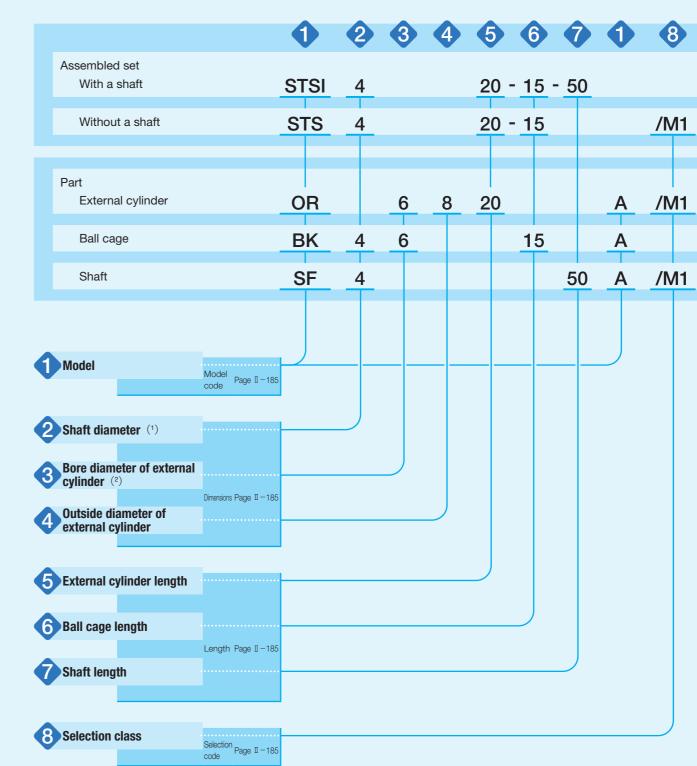
With the combination of an external cylinder with cylindrical raceway and balls incorporated in the retainer, rotary and linear motion in the axial direction is possible simultaneously with rotational motion.

Super small size

With the ultra-small sized balls incorporated in a thin external cylinder, small diameter and small sectional height are realized.

Super precision

Balls of high accuracy are incorporated with super-finished external cylinder and shaft to be adjusted to zero or minimal amount of preload, which realizes rotational motion and rotary and linear motion of high accuracy.

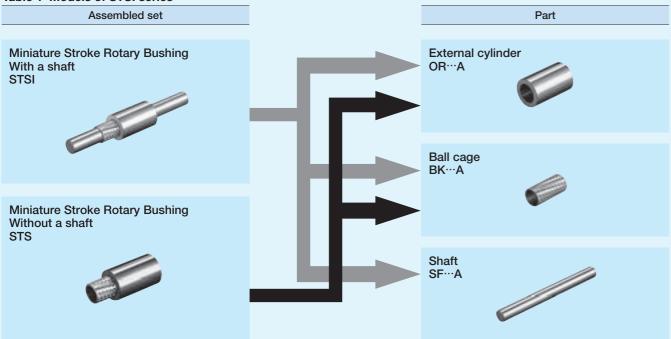

Extremely smooth operation

Since each component is precisely grounded and adjusted to ideal preload condition, extremely smooth and stable operation with small frictional resistance for long term can be achieved.

Identification Number and Specification

Example of an identification number

The specification of STSI series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, length, and a selection code for each specification to apply.


Notes (1) Indicates inscribed circle diameter for assembled set without a shaft or ball cage.

(2) Indicates circumscribed circle diameter for ball cage

Identification Number and Specification

Model	Miniature Stroke Rotary (STSI series)	Bushing	Assembled set with a shaft Assembled set without a shaft External cylinder Ball cage Shaft	: STSI : STS : OR···A : BK···A : SF···A
A a a a				
2 Shaft diameter			Indicate the shaft diameter in circle diameter for assembled ball cage.	
Bore diameter of external cylinder			Indicate the bore diameter of ex Indicates circumscribed circle of	
Outside diameter of external cylinder			Indicate the outside diameter of	external cylinder in mm.
A				
5 External cylinder length			Indicate the external cylinder le	ength in mm.
A				
6 Ball cage length			Indicate the ball cage length in	mm.
Objects Leavestly				
Shaft length			Indicate the shaft length in mm	1.
O Calcation along				
8 Selection class	M1 class	: M1	Selection code and tolerances	
	M2 class M3 class	: M2 : M3	For combination of each part, same selection code.	assemble parts with the

Table 1 Models of STSI series

Accuracy

Table 2 Tolerance and allowance

dimens outside di	iameter of cylinder	outside of ext	nce of diameter ternal nder m	Radial runout of outside diameter of external cylinder	Tolerance o length of external cylinder and shaft
Over	Incl.	High	Low	μm	mm
3	6	0	-5		
6	10	0	-6	8	±0.1
10	18	0	-8		±0.1
18	30	0	-9	9	

Table 3 Selection code and tolerance

	i÷٠	

Selection code	bore di of ex		inscribe	nce of ed circle neter	Tolera shaft di	
	High	Low	High	Low	High	Low
M1	-1	-3	-1	-3	0	-1
M2	-2	-4	-2	-4	-1	-2
M3	-3	-5	-3	-5	-2	-3

Load Rating

Load rating of the STSI series represents the value obtained when load is evenly distributed without the ball incorporated in the ball cage being dropped from the external cylinder and shaft end.

Lubrication _

Grease is not pre-packed in the STSI series, so please perform adequate lubrication as needed.

Both of oil lubrication and grease lubrication are available in the STSI series. For grease lubrication, it is typically applied lightly to the shaft and raceway of the external cylinder. Use of high-quality lithium-soap base grease is recommended for the grease to use.

Precaution for Use -

Fitting

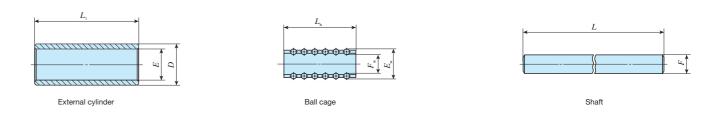
The STSI series is assembled to slight preload state to obtain high motion accuracy. Use external cylinder and housing hole of the STSI series with clearance fit to avoid any effect of press-fitting on inscribed circle diameter. In addition, for combination of an external cylinder, a ball cage and a shaft, select an external cylinder and a shaft with the same selection code to be combined with a ball cage.

2 Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

Mounting

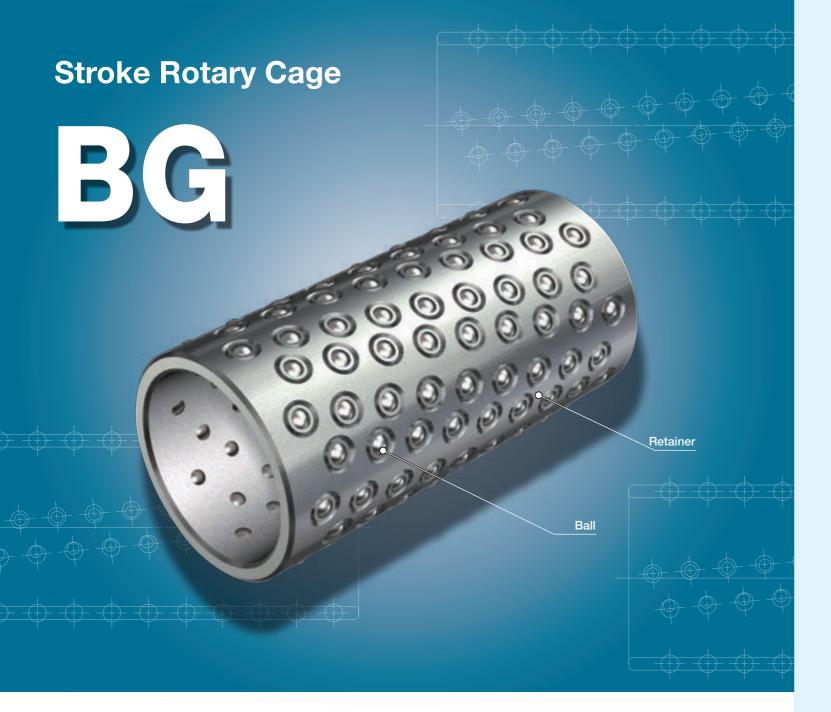
Typically, to fix the external cylinder and housing hole, the external cylinder end is fixed to the axial direction with stop ring or adhesive agent is used.


The ball cage is mounted through the shaft after the external cylinder is fixed to the housing hole. At this point, mounting becomes easier if the ball cage is shifted by one half of assembly insertion amount of the shaft in insert direction of the shaft so that the ball cage is positioned at the regular position after mounting.

4 Insertion of shaft

When inserting a shaft into an external cylinder, be careful not to pry open or give shock to the shaft.

IXU Miniature Stroke Rotary Bushing


	Assen	nbled se	et with a	a shaft	Assembled set without a shaft External cylinder									Ball	cage)	Shaft			
	STSI					S	ΓS			OR	…А			BK	···A			SF	A	
Shape	STSI								9											
Ciro	2	3	4	5	2	3	4	5	2	3	4	5	2	3	4	5	2	3	4	5
Size	6 8 10 12	6	8	10	12	6	8	10	12	6	8	10	12	6	8	10	12			

Shaft		External cylinder			der Ball cage					Basic static load rating (1)	Shaft							
diamet	assembled set		Mass (Ref.)	Nomin	al dimensio	ns mm		Mass (Ref.)		Nom	minal dimen	nsions mm	C_{0}	Identification			Identification number of assembled set with a shaft	
mm	without a shaft	number	g	E	D	L_1	number	g	$F_{ m w}$		$E_{\rm w}$	$L_{\scriptscriptstyle m b}$	N	number	g	F	L	
2	STS 2 L ₁ -L _b	OR 3 510 A OR 3 515 A	0.9 1.3	3.2	5	10 15	BK 2 3 5 A BK 2 3 10 A	0.1 0.3	2		3.2	5 10	10.5 21.0	SF 2 20 A SF 2 30 A	0.5 0.7	2	20 30	STSI 2 $L_{\scriptscriptstyle 1}$ - $L_{\scriptscriptstyle 5}$ - L
3	STS 3 L ₁ -L _b	OR 5 710 A OR 5 720 A OR 5 730 A	1.5 2.9 4.4	5	7	10 20 30	BK 3 510 A BK 3 515 A BK 3 520 A	0.7 1.1 1.4	3		5	10 15 20	38.4 57.7 76.9	SF 3 50 A SF 3 60 A	2.8	3	50 60	STSI 3 L ₁ -L ₅ -L
4	STS 4 L ₁ -L _b	OR 6 810 A OR 6 820 A OR 6 830 A	1.7 3.4 5.2	6	8	10 20 30	BK 4 610 A BK 4 615 A BK 4 620 A	0.9 1.3 1.8	4		6	10 15 20	59.5 89.3 119	SF 4 50 A SF 4 60 A	4.9 5.9	4	50 60	STSI 4 L ₁ -L _b -L
5	STS 5 L ₁ -L _b	OR 71010A OR 71020A OR 71030A	3.1 6.3 9.4	7	10	10 20 30	BK 5 710 A BK 5 715 A BK 5 720 A	1.0 1.6 2.0	5		7	10 15 20	81 121 162	SF 5 50 A SF 5 80 A	7.7 12.3	5	50 80	STSI 5 L ₁ -L ₅ -L
6	STS 6 L ₁ -L _b	OR 8 11 20 A OR 8 11 30 A OR 8 11 40 A	7.0 10.5 14.1	8	11	20 30 40	BK 6 810 A BK 6 815 A BK 6 820 A	1.2 1.8 2.3	6		8	10 15 20	103 154 206	SF 6 50 A SF 6 80 A	11.1 17.7	6	50 80	STSI 6 L,-L,-L
8	STS 8 L ₁ -L _b	OR 10 13 20 A OR 10 13 30 A OR 10 13 40 A	8.5 12.7 17.0	10	13	20 30 40	BK 81010 A BK 81015 A BK 81020 A	1.6 2.4 3.2	8		10	10 15 20	105 157 209	SF 8 50 A SF 8 80 A SF 8 90 A	19.7 31.5 35.5	8	50 80 90	STSI 8 L ₁ -L ₅ -L
10	STS 10 $L_{_{1}}\text{-}L_{_{\mathrm{b}}}$	OR 12 18 20 A OR 12 18 30 A OR 12 18 43 A	22.2 33.3 47.7	12	18	20 30 43	BK 10 12 15 A BK 10 12 20 A BK 10 12 25 A	2.8 3.8 4.8	10		12	15 20 25	191 254 318	SF 10 80 A SF 10 100 A SF 10 120 A	49.3 61.6 74.0	10	80 100 120	STSI 10 <i>L</i> ₁ - <i>L</i> _b - <i>L</i>
12	STS 12 <i>L</i> ₁ - <i>L</i> _b	OR 14 20 25 A OR 14 20 30 A OR 14 20 35 A OR 14 20 40 A	31.4 37.7 44.0 50.3	14	20	25 30 35 40	BK 12 14 20 A BK 12 14 25 A BK 12 14 30 A	4.3 5.4 6.1	12		14	20 25 30	341 427 512	SF 12 80 A SF 12 100 A SF 12 120 A	71.0 88.8 106.5	12	80 100 120	STSI 12 $L_{\scriptscriptstyle 1}$ - $L_{\scriptscriptstyle 5}$ - L

Note (1) Represents the value when load is evenly distributed without the ball incorporated in the ball cage being dropped from the external

Remark: L_1 , L_2 , and L_3 in the identification number field of assembled set without a shaft and assembled set with a shaft represent length of the external cylinder, length of the ball cage, and length of the shaft in the dimension table.

Points

Rotational and linear motions

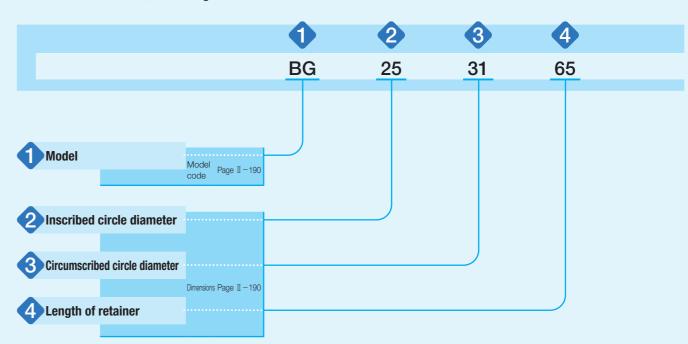
High-accuracy balls incorporated into the retainer make use of the raceway accuracy to allow high-accuracy rotational motion and rotary and linear motion.

Superior high speed operation

As the retainers have high rigidity and light in weight with low inertia, this series is suitable for abrupt operations such as high-speed rotary and linear motion in axial direction.

Large load rating and high rigidity

In the retainer, balls are incorporated as many as possible. So the load ratings are large and the rigidity is high with small elastic deformation even under fluctuating load or offset load.


Long life

Each ball held in the retainer is arranged in a spiral formation in order to prevent the balls from tracing the same path. Rolling contact fatigue of the shaft and housing raceways is thereby minimized, and stable high accuracy can be assured for long periods of time.

Identification Number and Specification

Example of an identification number

The specification of BG series is indicated by the identification number. Indicate the identification number, consisting of a model code and dimensions.

Identification Number and Specification

Model	Stroke Rotary Cage	: BG
	(BG series)	
2 Inscribed circle diameter		Indicate the inscribed circle diameter in mm.
3 Circumscribed circle diameter		Indicate the circumscribed circle diameter in mm.
4 Length of retainer		Indicate the length of retainer in mm.

Allowance of Velocity

The BG series is capable of rotation and rotary and linear motion. However, allowance of velocity for these motions performed at the same time is obtained from the equation (1). Typical values are indicated in Table 1.

$$DN \ge D_{\text{\tiny DW}} n + 10 S n_1 \cdots$$
 (1)

where, DN: Allowance of velocity (see Table 1)

n: Rotational speed, min-1

n,: Number of strokes per minute, min⁻¹

S: Stroke length, mm

 D_{ow} : Pitch circle diameter of balls, mm

$$\left(D_{\text{pw}} = \frac{F_{\text{w}} + E_{\text{w}}}{2}\right)$$

 F_{w} : Inscribed circle diameter, mm

E_w: Circumscribed circle diameter, mm

However, applicable when $n_1 \le 5000$, $S n_1 \le 50000$.

Table 1 Allowance of velocity

Lubrication conditions	DN
Oil lubrication	600 000
Grease lubrication	300 000

Precaution for Use

Fitting

BG series is generally used with a slight radial internal clearance fit. Recommended fits are shown in Table 2.

When it is used for a guide post of the press die set or high operation accuracy is required, a preload is generally given. The tolerances of dimensions of the shaft and housing bore in this case are shown in Table 3. However, since excessive preload shortens the life of Stroke Rotary Cage, it is suggested that the lower limit of radial clearance is not smaller than the value shown in Table 4.

Table 2 General fit

Tolerance class								
Shaft Housing hole								
h5, h6 H6, H7								

Table 3 Tolerances of dimensions for shaft and housing hole unit: μ m

	Shaft		Housing hole				
Nominal h5		5	Nominal	K	5		
dimensions mm	H		dimensions mm	Н	L		
19	0	- 9	25	+1	-8		
22	0	- 9	28	+1	-8		
25	0	- 9	31	+2	-9		
28	0	- 9	36	+2	-9		
32	0	-11	40	+2	-9		
38	0 -11		48	+2	-9		

Table 4 Lower limit of radial internal clearance unit: μm

Nominal dimensions of shaft mm	Lower limit of radial internal clearance
19	-5
22	-5
25	-5
28	-7
32	-7
38	-7

2 Raceway

BG series is used with a shaft and housing hole as raceway surfaces. Recommended values for surface hardness and roughness of mating raceway are shown in Table 5 and the recommended values for the minimum effective hardening depth are shown in Table 6.

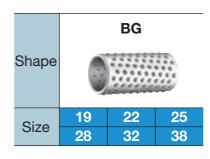
When some of the balls held in the retainer escape the housing raceway and operate in linear motion, it is recommended that the housing raceway ends should be slightly chamfered so that the balls enter or exit smoothly.

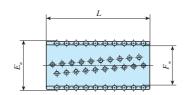
Table 5 Surface hardness and roughness of raceway

Item	Recommended value	Remark
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).
Surface roughness	0.2 μ mRa or lower (0.8 μ mRy or lower)	Where accuracy standard is low, around 0.8 μ mRa (3.2 μ mRy) is also allowed.

Note (1) For hardness factor, refer to Fig. 3 in page II-5.

Table 6 Minimum effective hardening depth of raceway


Nominal dimensions of shaft and housing hole


Over Incl.

- 28 0.8

28 50 1.0

IK Stroke Rotary Cage

Shaft		Mass (Ref.)	No	Basic dynamic load rating (1)	Basic static load rating (1)		
diameter	Identification number		mm				C_{0}
mm		g	$F_{ m w}$	$E_{\rm w}$	L	N	N
19	BG 192555*	33	19	25	55	2 330	2 600
22	BG 222860*	40	22	28	60	2 490	2 950
25	BG 253165*	48	25	31	65	2 660	3 390
28	BG 283670*	76	28	36	70	3 830	4 660
32	BG 324075*	93	32	40	75	4 480	6 030
38	BG 384880*	162	38	48	80	6 750	9 390

Note (1) Basic dynamic load rating and basic static load rating are values when balls incorporated into the retainer share the load evenly without escaping the raceway.

Remark: The identification numbers with * are our semi-standard items.

Roller Way & Flat Roller Cage

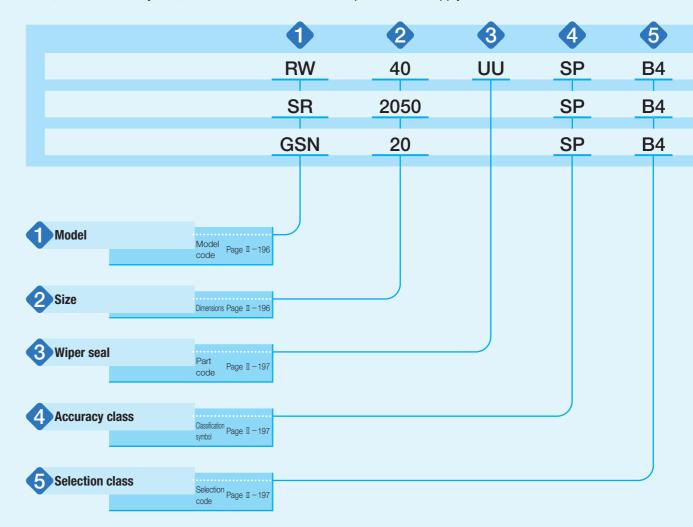
Roller Way
Flat Roller Cage

II - 193

Points

High rigidity and accuracy

Since the high accuracy roller is built into the highly flat surface way finished by accurate ground, the product has a high rigidity and high accuracy. Also because the variation of operation height can be selected in the unit of 2 µm, the load can be evenly distributed even in the multiple-use environment.


Smooth motion

The structure of all models lets the roller to be guided accurately without creating skew, yielding an extremely stable and smooth linear motion.

Identification Number and Specification

Example of an identification number

The specifications of RW, SR and GSN are indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a classification symbol, and a selection code for each specification to apply.

Identification Number and Specification -Model · Size-

Model	Roller Way RW Roller Way RW inch series Roller Way SR Roller Way GSN	: RW : RWB : SR : GSN
	For applicable models and sizes	s, see Table 1.1 and Table 1.2.
2 Size		Indicate the representative width in mm. For the inch series, indicate the width in the unit of 1/16 inch. For applicable models and sizes, see Table 1.1 and

Table 1.2

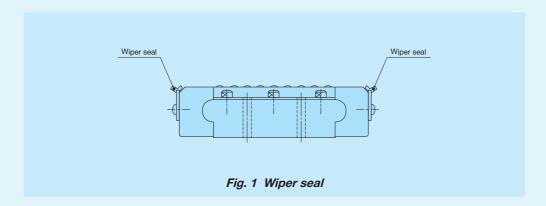
1N=0.102kgf=0.2248lbs.

Table 1.1 Models and sizes of RW, SR and GSN (Metric series)

Chana	Model	Size										
Shape	Model	15	20	25	26	30	32	40	50	70	95	
	RW	_	_	-	0	0	_	0	0	0	0	
	SR	0	0	0	-	-	0	0	0	-	-	
	GSN	0	0	0	-	-	0	0	0	-	-	

Table 1.2 Models and sizes of RWB (Inch series)

Chana	Model	Size							
Shape	iviouei	14	16	24	32	48	64		
	RWB	0	0	0	0	0	0		


Without wiper seal

With wiper seal

UU

Applicable to Roller Way RW.

Attach the wiper seal in the linear motion direction. This wiper seal is made of special synthetic rubber in double-lipped shape and has high removal performance against foreign substances.

4 Accuracy class	Ordinary High Precision Super precision	: No symbol : H : P : SP	For applicable accuracy class, see Table 2.1 and Table 2.2. For details of accuracy class, see Table 3.1, Table 3.2, and Table 4.
5 Selection class			When many are used on the same surface, it is required to use those with the same selection code from tolerances of dimensions in ${\it H}$ of Table 4 to evenly distribute the load. When tolerances of dimensions of ${\it H}$ is not specified, please specify a classification symbol only.

-Accuracy Class · Selection Class -

Table 2.1 Application of accuracy class of RW, SR and GSN (Metric series)

	CI	ass (classific	ation symbo	1)
Size	Ordinary (1)	High	Precision	Super precision
	(No symbol)	(H)	(P)	(SP)
15	0	0	0	0
20	0	0	0	0
25	0	0	0	0
26	_	0	0	0
30	_	0	0	0
32	0	0	0	0
40	0	0	0	0
50	0	0	0	○(²)
70	_	0	0	_
95	_	0	0	_

Notes (1) Applicable to SR and GSN.

(2) Applicable to RW.

Table 2.2 Application of accuracy class of RWB (Inch series)

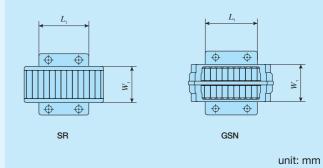

(inch series)												
	Class (classification symbol)											
Size	Ordinary	High	Precision	Super precision								
	(No symbol)	(H)	(P)	(SP)								
14	_	0	0	0								
16	_	0	0	0								
24	_	0	0	0								
32	_	0	0	0								
48	_	0	0	_								
64	_	0	0	_								

Table 3.1 Tolerances of RW and RWB width W

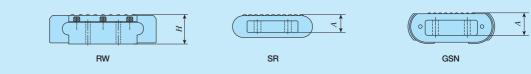

	RW	RWB				
Size	Dim. W tolerance mm	Size	Dim. W tolerance inch			
26 30 40	0 -0.05	14 16 24	0 -0.002			
50 70	0 -0.07	32 48	0 -0.003			
95	0 -0.10	64	0 -0.004			

Table 3.2 Tolerances of SR and GSN width W_1 , and length L_1

Size Dim. W₁ tolerance Dim. L_1 tolerance 15 20 0 0 25 -0.2-0.232 40 0 0 50 -0.3-0.3

Table 4 Selection code, and tolerance of height H and operation height A

Item		Dim. tolerance of height H and operation height A							
	Selection code	Metric series	Inch series						
Accuracy class		mm	inch						
Ordinary (no symbol)	_	0 ~ -0.010	_						
High (H)	E 5	0 ~ -0.005	0 ~ -0.0002						
rligir (ri)	E10	$-0.005 \sim -0.010$	$-0.0002 \sim -0.0004$						
	C 3	0 ~ -0.003	0 ~ -0.00012						
Precision (P)	C 6	$-0.003 \sim -0.006$	$-0.00012 \sim -0.00024$						
	C 9	$-0.006 \sim -0.009$	$-0.00024 \sim -0.00036$						
	B 2	0 ~ -0.002	0 ~ -0.00008						
	B 4	$-0.002 \sim -0.004$	$-0.00008 \sim -0.00016$						
Super precision (SP)	B 6	$-0.004 \sim -0.006$	$-0.00016 \sim -0.00024$						
	B 8	$-0.006 \sim -0.008$	$-0.00024 \sim -0.00032$						
	B10	$-0.008 \sim -0.010$	$-0.00032 \sim -0.00040$						

Precaution for Use

Raceway

Recommended values for surface hardness and roughness of mating raceway are shown in Table 5 and the recommended value for the minimum effective hardening depth is shown in Table 6.1 and Table 6.2.

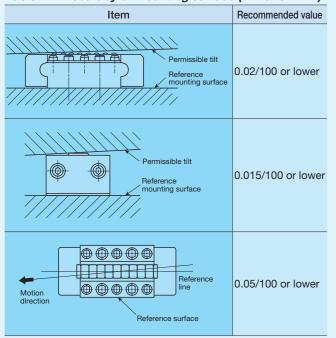
Table 5 Surface hardness and roughness of raceway

,											
Item	Recommended value	Remark									
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).									
Surface roughness	(0.8 μmRy or	Where accuracy standard is low, around 0.8 μ mRa (3.2 μ mRy) is also allowed.									

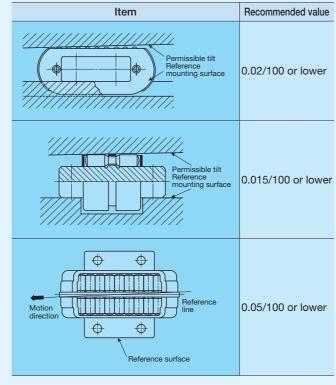
Note (¹) For hardness factor, refer to Fig. 3 in page II-5.

Table 6.1 Minimum effective hardening depth of raceway (RW and RWB) unit: mm

Identificati	on number	Recommended value for							
10.011		minimum effective hardening depth							
RW 26	RWB 14	0.8							
RW 30	RWB 16	1.0							
RW 40	RWB 24	1.5							
RW 50	RWB 32	2.0							
RW 70	RWB 48	2.5							
RW 95	RWB 64	3.0							

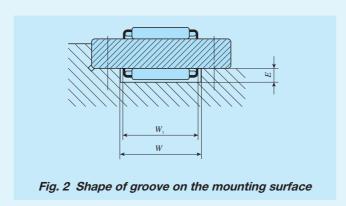

Table 6.2 Minimum effective hardening depth of raceway (SR and GSN) unit: mm

Identificati	on number	Recommended value for minimum effective hardening depth
SR 15	GSN 15	0.8
SR 20	GSN 20	0.6
SR 25	GSN 25	1.0
SR 32	GSN 32	1.0
SR 40	GSN 40	1.5
SR 50	GSN 50	2.0


2 Accuracy of mounting surface

For accuracy of mounting surface, values in Table 7.1 and Table 7.2 are recommended.

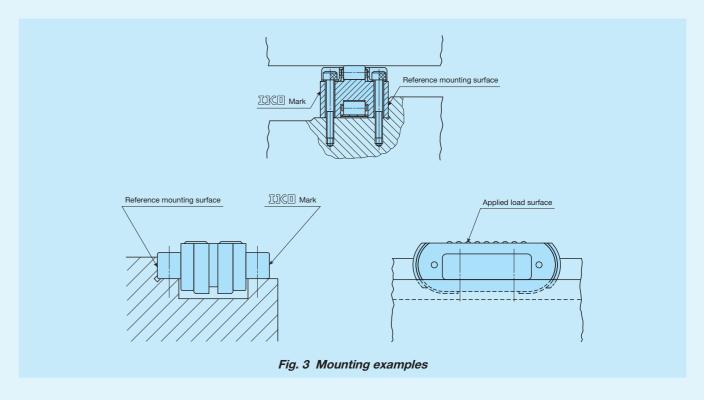
Table 7.1 Accuracy of mounting surface (RW and RWB)


Table 7.2 Accuracy of mounting surface (SR and GSN)

3 Groove machining on SR and GSN mounting surface

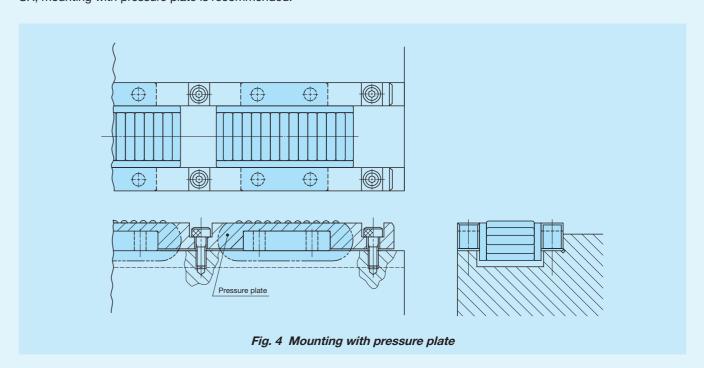
When mounting SR and GSN to the groove-machined mounting surface, the groove depth E should be deeper than the height from the bottom surface of the way to the bottom of the SR and GSN to provide clearance for oil pool. (See Fig. 2.)

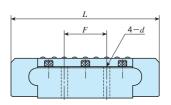
Other than the above, groove width W corresponding to the width W_1 for SR should be as wide as clearance fit and the relation between the clearance and the groove position on the reference surface side must be considered.

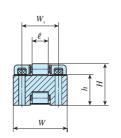

4 Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

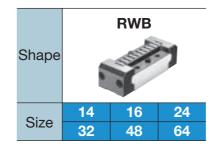
Precaution for Mounting

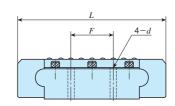

Reference mounting surface

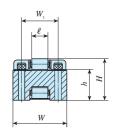

To mount RW, RWB, SR, and GSN in the linear motion direction, mount them by referring the opposite side of the TIKO mark on the way end as reference surface. (See Fig. 3.) In addition, the surface under load is the upside of the TIKO mark on the way end seen as the normal position.



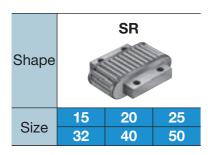
2 How to mount SR and GSN

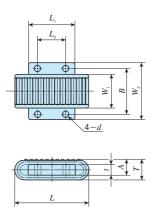

To mount it, fix the way directly to a table or a bed with bolts, or fix it with pressure plate as indicated in Fig. 4. For SR, mounting with pressure plate is recommended.

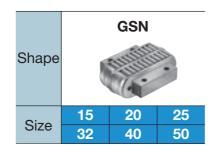


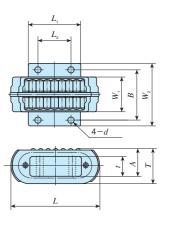


Libert Continu	Mass (Ref.)			N		limension m	Basic dynamic load rating	Basic static load rating			
Identification number	g	W	Н	L	l	F	$W_{_1}$	h	d	C N	<i>C</i> _o N
RW 26	74	26	14	50	6	19	16	10	3.4	25 000	40 100
RW 30	179	30	19	70	7.5	25.4	19	14	4.5	39 800	71 200
RW 40	740	40	28	100	11.3	38.1	26	21	5.5	85 700	160 000
RW 50	1 750	50	38	140	15	50.8	35	28.5	6.6	154 000	314 000
RW 70	5 260	70	57	200	22.5	76.2	48	42.5	9.0	306 000	638 000
RW 95	12 700	95	76	270	30	101.6	65	56.5	11.0	514 000	1 130 000

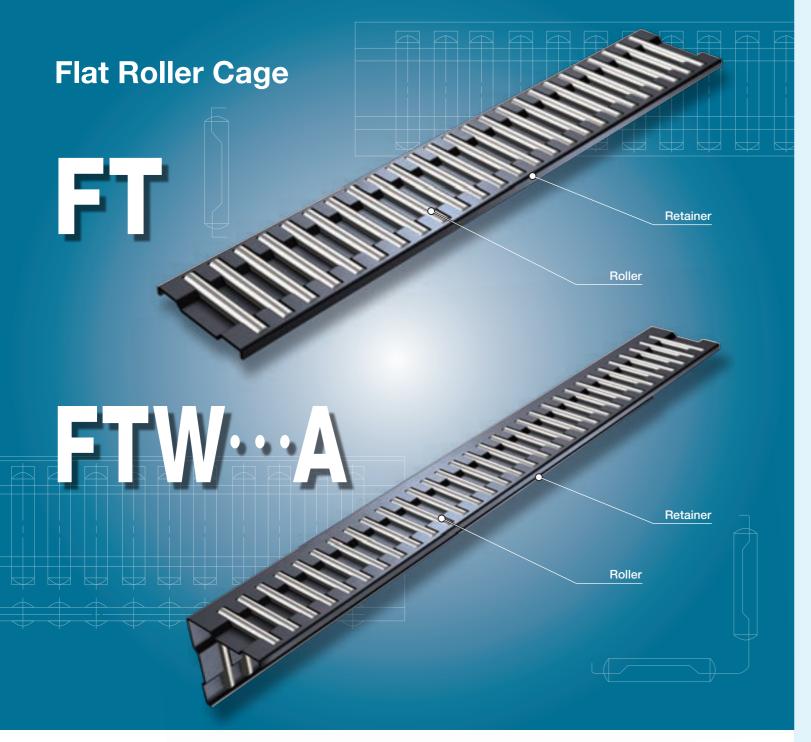





Lilea Million Maria	Mass (Ref.)			Basic dynamic load rating	Basic static load rating						
Identification number	g	W	Н	L	l	F	$W_{_1}$	h	d	C N	<i>C</i> ₀ N
RWB 14*	91	7/8 22.225	^{9/₁₆} 14.288	1.97 50	0.236 6	^{3/4} 19.050	^{43/₆₄} 17.066	0.41 10. 4	0.125 3.2	25 000	40 100
RWB 16*	227	1 25.400	^{3/4} 19.050	2.76 70	0.295 7.5	1 25.400	13/ ₁₆ 20.638	0.56 14.2	0.125 3.2	39 800	71 200
RWB 24*	730	1 ^{1/2} 38.100	1 ^{1/8} 28.575	3.94 100	0.445 11.3	1 ^{1/2} 38.100	1 ^{7/} 32 30.956	0.85 21.5	0.180 4.6	85 700	160 000
RWB 32*	1 770	2 50.800	1 ^{1/2} 38.100	5.51 140	0.591 15	2 50.800	1 ^{5/8} 41.275	1.12 28.5	0.206 5.2	154 000	314 000
RWB 48*	5 670	3 76.200	2 ^{1/4} 57.150	7.88 200	0.886 22.5	3 76.200	2 ^{7/} 16 61.912	1.68 42.8	0.266 6.8	306 000	638 000
RWB 64*	13 500	4 101.600	3 76.200	10.63 270	1.181 30	4 101.600	3 ^{1/4} 82.550	2.24 57.0	0.328 8.3	514 000	1 130 000


Remark: The identification numbers with * are our semi-standard items.

IK Roller Way



		Mass (Ref.)		Nominal dimensions mm								Basic dynamic load rating	Basic static load rating		
Identification	on number		***	117	,				,		B	,		C	C_{0}
		g	$W_{_1}$	W_2	L	A		I	L_1	L_2	В	d	t	N	N
SR 1540	_	62	15	30	40	11		15	20	12	23	3.3	7	26 500	45 900
	GSN 15	82	15	30	40	15		20	19	12	23	3.4	11	22 300	36 000
SR 2050		120	20	36	50	12		16	30	18	29	3.8	8	42 800	96 300
	GSN 20	145	20	36	50	15		20	29	18	29	3.4	11	40 100	87 900
SR 2560	_	210	25	45	60	14		19	35	20	36	4.8	9	67 300	156 000
	GSN 25	260	25	45	60	18		24.5	35	20	36	4.5	13	58 900	131 000
SR 3270	_	345	32	55	70	15		20	45	27	44	5.5	10	97 500	271 000
	GSN 32	413	32	55	70	18		24.5	45	27	44	4.5	13	88 800	241 000
SR 4090		750	40	68	87	21		28	55	35	54	6.5	14	143 000	373 000
	GSN 40	940	40	68	92	25		34	54	35	54	5.5	18	133 000	337 000
SR 50125	_	1 870	50	82	125	30		40	78	50	66	8.5	20	252 000	673 000
	GSN 50	1 800	50	82	121	30		42	77	50	66	6.6	20	242 000	634 000

Points

Low section

Flat Roller Cage is a limited linear motion guide consisting of high accuracy rollers and a very precise retainers and features low cross sectional height which is as high as the roller diameter.

Large load rating

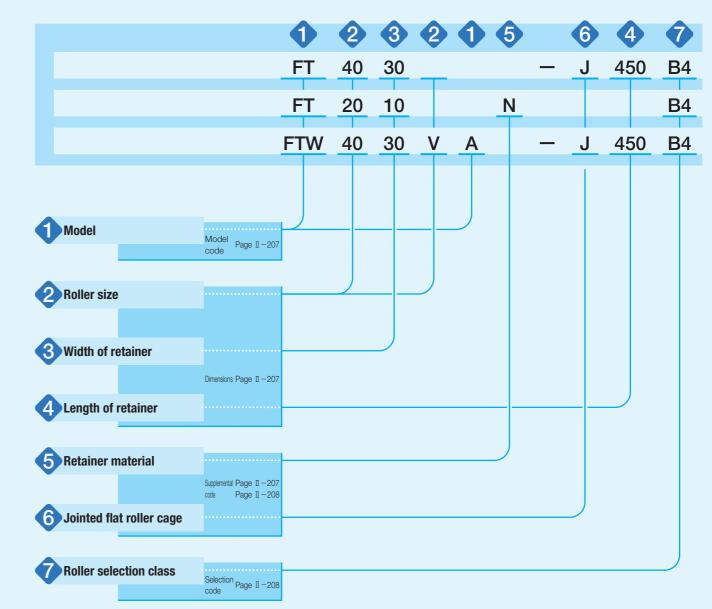
Rollers are assembled in a cage with a small pitch distance, so load ratings are large and the rigidity is high.

Simple replacement for rolling guide

A single row model and a double row model with a 90° are standardized and can be easily used to modify the conventional plain guide ways of machine tools, etc. into a rolling guide type without a large-scale redesign of the bed.

Smooth operations and low noise

As a retainer processed with high accuracy guides the rollers, the frictional resistance is very low without stick-slip, and stable linear motion is obtained. Retainers made of synthetic resin are most suitable for applications where low noise is required.


Easy handling

The rollers are caged in a retainer securely, allowing easy handling.

Identification Number and Specification

Example of an identification number

The specification of FT and FTW···A are indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a supplemental code, and a selection code for each specification to apply.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Identification Number and Specification —Model · Roller Size · Width of Retainer · Length of Retainer · Retainer Material —

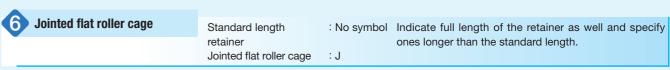

1 Model	Flat Roller Cage	Single row type Double row angle type	: FT : FTW···A
	For applicable models and roller size	es, see Table 1.	
2 Roller size		Indicate 10 times as large value as the (mm). Indicate $10\sqrt{2}$ times as large integer diameter (mm) for those with code V.	value as roller

Table 1 Models and sizes of FT and FTW···A

Shape	Retainer Model		Roller size							
Shape	material	20	25	30	35	40	50	100	200	
Single row type	Steel made	FT	0	0	0	0	0	0	0	0
William .	Synthetic resin made	FTN	0	0	0	0	_	_	_	-
Double row angle type	Steel made	FTW···A	-	-	_	-	0	0	0	0

3 Width of retainer			Indicate the width of retainer in mm.
4 Length of retainer			Indicate the length of retainer in mm. Length other than the standard length stated in the dimension table can be prepared upon request.
			Contact IKO for further information.
5 Retainer material	Steel made Synthetic resin made	: No symbol : N	Specify the retainer material. For applicable models and roller sizes, see Table 1.

- Jointed Flat Roller Cage \cdot Roller Selection Class -

Flat Roller Cage with extended full length can be produced by connecting steel made retainers each other. If needed, please specify a retainer full length in mm after the supplemental code "J" following the way indicated in the example of an identification number. Maximum length of a jointed flat roller cage is indicated in Table 2.

Length longer than the maximum stated in Table 2 can be prepared upon request. Contact IKO for further information.

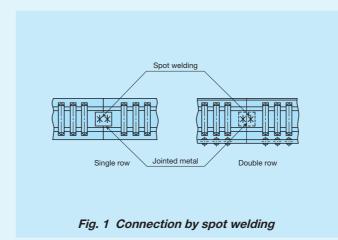


Table 2 Maximum length of jointed flat roller cage unit: mm Identification number Maximum length of retainer FT 2010 FT 2515 300 FT 3020 FT 3525 375 FT 4030 FT 4035 600 FT 4026 V FT 5038 FT 5043 FT 5030 V 1 000 FT 10080 FT 10060 V FT 200120 1 500 FT 200100 V 1 000 4030 VA 600 **FTW** 5045 A FTW FTW 5050 A 1 000 FTW 5035 VA FTW 10095 A FTW 10070 VA 1 500 FTW 200150 A FTW 200120 VA

Roller selection class

For roller selection classes and tolerances of dimensions for roller diameters, see Table 3.

Tolerances of dimensions for roller diameters are indicated in Table 3. Normally, one of the standard selection classes is delivered. To achieve accurate load distribution, it is necessary to combine products with the same selection code. If needed, please specify it following the way indicated in the example of an identification number.

Table 2	Dallar	selection	alacc
lavie 3	nullei	SCICCIOII	CIASS

unit: µm

	,								
Selection	Selection	Average tolerances of dimensions							
class	code	for roller diameters (1)							
	B2	0 ~ -2							
Standard	B4	−2 ~ −4							
	B6	-4 ∼ -6							
	B8	-6 ∼ -8							
	A1	0 ~ -1							
	A2	−1 ~ −2							
Semi-	A3	−2 ~ −3							
standard	A4	−3 ~ −4							
	A5	-4 ~ −5							
	A6	-5 ~ −6							

Note (1) The dimensional accuracy of rollers conforms to JIS B 1506 "Rolling bearings-Rollers." For detailed information on accuracy, please contact IKO.

Precaution for Use

Raceway

Recommended values for surface hardness and roughness of mating raceway are shown in Table 4 and the recommended value for the minimum effective hardening depth is shown in Table 5.

Table 4 Surface hardness and roughness of raceway

Item	Recommended value	Remark
Surface hardness	58~64HRC	When the surface hardness is low, multiply the load rating by hardness factor (1).
Surface roughness	0.2 μ mRa or lower (0.8 μ mRy or lower)	Where accuracy standard is low, around 0.8 μ mRa (3.2 μ mRy) is also allowed.

Note (¹) For hardness factor, refer to Fig. 3 in page II-5.

Table 5 Minimum effective hardening depth of raceway

Roller	liameter	Recommended value for
Over	Incl.	minimum effective hardening depth
_	3	0.5
3	4	0.8
4	5	1.0
5	8	1.5
8	10	2.0
10	14.142	2.5
14.142	20	3.5

2 When used for bed surface and 90° V surface

After complete lapping as indicated in Fig. 2, mount FT to FTW···VA, or FT···V to FTW···A. Combination of Flat Roller Cage at this point is indicated in Table 6.

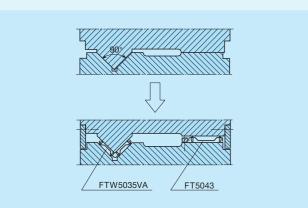
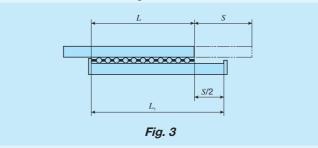


Fig. 2 Example of use on flat surface and 90° V surface

Table O. Osmalinskiem of Flat Ballon Osm


3 Stroke length and retainer length

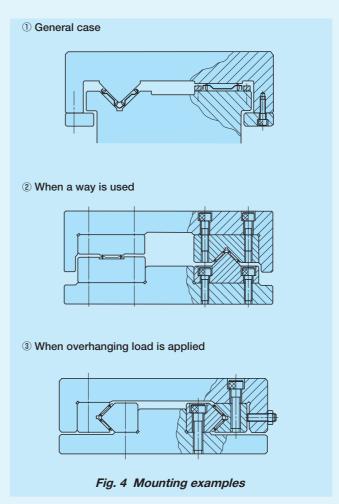
Movement in a linear direction as in Fig. 3 will move the Flat Roller Cage in the same direction by one half of the movement amount. Therefore, way length, stroke length and retainer length are correlated as follows:

where, L_1 : Way length, mm

 ${\it S}~:$ Stroke length, ${\it mm}$

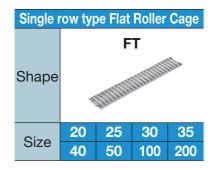
L: Retainer length, mm

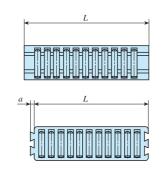
4 Operating temperature

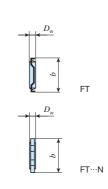

If the retainer is made of steel, it can withstand higher temperature. However, if you use it in an environment exceeding 100°C, please contact IKO.

The retainer made of synthetic resin can withstand up to 100°C. For continuous operation, please keep it under 80°C.

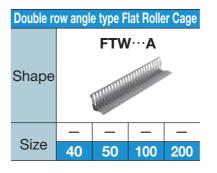
Table 6 Combin	Table 6 Combination of Flat Roller Cage unit: mm								
Combination	For flat	surface	For 90° V surface						
Number	Identification number	Roller diameter D _w	Identification number	Roller diameter $D_{\rm w}$					
1	FT 4030	4	FTW 4030 VA	2.828					
2	FT 4035	4	FTW 4030 VA	2.828					
3	FT 5038	5	FTW 5035 VA	3.535					
4	FT 5043	5	FTW 5035 VA	3.535					
5	FT 10060 V	7.071	FTW 5045 A	5					
6	FT 10060 V	7.071	FTW 5050 A	5					
7	FT 10080	10	FTW 10070 VA	7.071					
8	FT 200100 V	14.142	FTW 10095 A	10					
9	FT 200120	20	FTW 200120 VA	14.142					

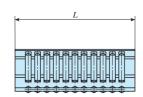

Precaution for Mounting


FT and FTW···A are typically mounted as indicated in Fig. 4. When the heat-treated and polished way is mounted to the device body, you must be careful not to make deformation by tightening.

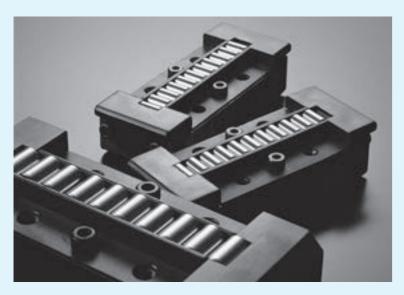


RW·SR·GSN FT·FTW···A


IKU Flat Roller Cage



Identification n	umber	Mass (Ref.)	Nominal dimensions mm			Basic dynamic load rating	Basic static load rating	
Steel retainer	Synthetic resin retainer	g	D_{w}	b	L	а	C N	<i>C</i> ₀ N
	FT 2010 N	1.63			32	2	8 660	19 800
FT 2010 - 32		1.91	2	10	32		9 710	22 900
FT 2010 - 100		5.8			100	_	22 900	68 700
	FT 2515 N	4.3			45	2.5	17 300	41 100
FT 2515 - 45		5.6	2.5	15	45	_	22 000	56 200
FT 2515 - 100		11.6			100		37 900	112 000
	FT 3020 N	9.7	3	20	60	3	31 600	78 800
FT 3020 - 60		12.5	3	20	00	_	37 100	96 700
	FT 3525 N	18.6	3.5	25	75	3.5	51 400	132 000
FT 3525 - 75		23	3.3	25	75	_	58 400	155 000
FT 4030 - 150		73	4	30	150	_	127 000	382 000
FT 4035 - 150		86	4	35	150		143 000	446 000
FT 4026V - 150		45	2.828	26	150	_	97 300	347 000
FT 5038 - 250		195	5	38	250		267 000	851 000
FT 5043 - 250		200	5	43	250	_	306 000	1 020 000
FT 5030V - 250		103	3.535	30	250	_	180 000	652 000
FT 10080 - 500		1 610	10	80	500	_	1 390 000	4 370 000
FT 10060V - 500		870	7.071	60	500	_	838 000	2 900 000
FT 200120 - 500		4 940	20	120	500	_	3 120 000	7 670 000
FT 200100V - 500		2 860	14.142	100	500	_	2 090 000	5 820 000



	Mass (Ref.)	1	Nominal dim mm		Basic dynamic load rating	Basic static load rating	
Identification number		$D_{ m w}$	b	L	b_1	С	C_{o}
	g					N	N
FTW 4030 VA - 150	94	2.828	30	150	24.5	118 000	491 000
FTW 5045 A - 250	410	5	45	250	35.5	332 000	1 240 000
FTW 5050 A - 250	460	5	50	250	40.5	371 000	1 440 000
FTW 5035 VA - 250	220	3.535	35	250	29	218 000	922 000
FTW 10095 A - 500	3 360	10	95	500	77	1 680 000	6 180 000
FTW 10070 VA - 500	1 790	7.071	70	500	56.5	1 020 000	4 110 000
FTW 200150 A - 500	10 200	20	150	500	118	3 790 000	10 800 000
FTW 200120 VA - 500	5 940	14.142	120	500	96	2 530 000	8 220 000

General Explanation

 ${1\hspace{-.1em}\hbox{$\hspace{-.1em}\hbox{}\hspace{-.1em}\hbox{$\hspace{-.1em}\hspace{.1em}\hspace{~.1em}\hspace{$\hspace{-.1em}\hspace{$\hspace{-.1em}\hspace{.1em}\hspace{$\hspace{.1em}\hspace{.1em}\hspace{1em}\hspace{.1em}\hspace{.1em}\hspace{$\hspace{.1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1e$

Load Rating and Life

Life of linear motion rolling guides

Even in normal operational status, a linear motion rolling guide will reach the end of its life after a certain period of operations. As repeated load is constantly applied onto a raceway and rolling elements of the linear motion rolling guide, this leads to leprous damage (scale-like wear fragments) called fatigue flaking due to rolling contact fatigue of materials, it will be unusable at the end. Total traveling distance before occurrence of this fatigue flaking on a raceway or rolling elements is called the life of linear motion rolling guide.

As the life of linear motion rolling guide may vary depending on material fatigue phenomenon, rating life based on statistic calculation is used.

Rating life

Rating life of linear motion rolling guide refers to the total traveling distance (1) 90% of a group of the same linear motion rolling guide can operate without linear motion rolling guide material damages due to rolling contact fatigue when they are operated individually under the same conditions.

Note (1) Stroke Rotary Bushing is represented as total number of rotations.

Basic dynamic load rating *C*

Basic dynamic load rating refers to load with certain direction and size that is logically endurable for rating life indicated in Table 1 when a group of the same linear motion rolling guides is operated individually under the same conditions.

Table 1 Rating life

<u> </u>					
Series	Rating life				
Crossed Roller Way Roller Way & Flat Roller Cage	100×10³m				
Linear Slide Unit Linear Ball Spline Linear Bushing	50×10³m				
Stroke Rotary Bushing	10 ⁶ rotations				

Basic static load rating C_0

Basic static load rating refers to static load generating a certain contact stress at the center of contact parts of the rolling elements and a raceway under maximum load, which is the load at the allowable limit for normal rolling motion. Generally, it is used considering static safety factor.

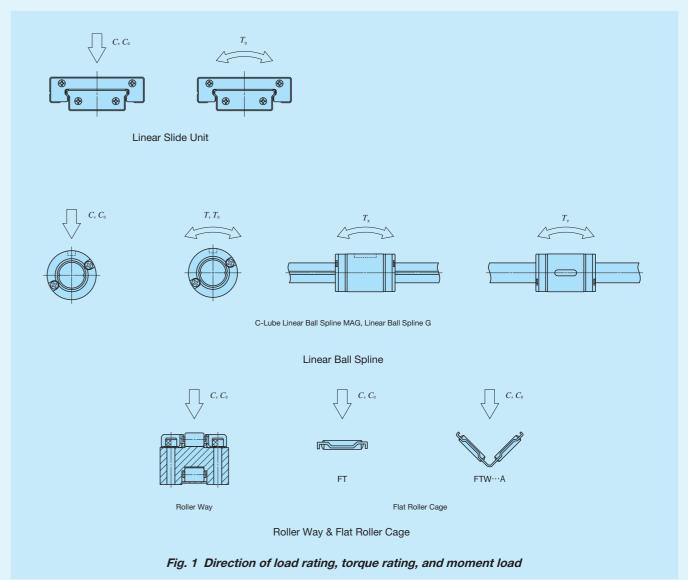
Allowable load F

 $\Pi - 3$

Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small.

Therefore, use applied load within the allowable load range if very smooth rolling motion and high accuracy are required.

Dynamic torque rating T


Dynamic torque rating refers to a torque with a certain direction and size with which 90% of a group of the same linear ball splines can run 50×10^3 m without material damages due to rolling contact fatigue when they are operated individually.

Static torque rating T_0 Static moment rating T_0 , T_y , T_y

Static torque rating and static moment rating refer to static torque or moment load generating a certain level of contact stress at the center of contact parts of rolling elements and a raceway under the maximum load when the torque or moment load (see Fig. 1) are loaded, which is the torque or moment load at the allowable limit for normal rolling motion. Generally, it is used considering static safety factor.

Load direction and load rating

Linear motion rolling guide is used with its load rating corrected in accordance to the load direction. Basic dynamic load rating and basic static load rating indicated in the dimension table should be corrected before use. As the values to be corrected vary depending on series, please see an explanation for each series.

 $\Pi - 4$

Remark: For the cases of Crossed Roller Way and Linear Bushing, see an explanation of each series.

Calculating formula of life

Rating life and basic dynamic load rating of a linear motion rolling guide are correlated as indicated in Table 2.1 and Table 2.2.

Table 2.1 Calculating formula of life for each series

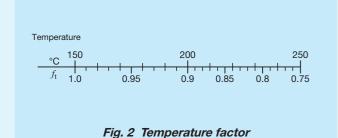
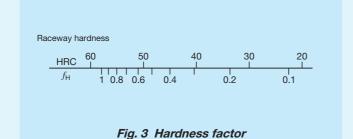

	Calculating fo		
Series	Total traveling distance 103 m	Life length h	Code description
Crossed Roller Way Roller Way & Flat Roller Cage	$L=100\left(\frac{C}{P}\right)^{\frac{10}{3}}$		 L : Rating life, 10³ m C : Basic dynamic load rating, N T : Dynamic torque rating, N⋅m
Linear Slide Unit Linear Bushing	$L=50\left(\frac{C}{P}\right)^3$	$L_{\rm h} = \frac{10^{\rm o}L}{2Sn_{\rm 1} \times 60}$	P: Dynamic equivalent load (or applied load), N M: Applied torque N·m
Linear Ball Spline	$L=50\left(\frac{C}{P}\right)^{3}$ $L=50\left(\frac{T}{M}\right)^{3}$		$L_{\rm h}$: Rating life in hours h S : Stroke length mm $n_{\rm 1}$: Number of strokes per minute min ⁻¹

Table 2.2 Calculating formula of life for Stroke Rotary Bushing

	Calcula	ating formula of rating life			
Series	Total number of rotation	Life length	Code description		
Rotational motion		10 ⁶ 7	 L : Rating life, 10⁶ rotations C : Basic dynamic load rating, N P : Applied load N 		
Rotational and rotary compound motion	$L = \left(\frac{C}{P}\right)^3$	$L_{h} = \frac{10^{6}L}{60\sqrt{(D_{PW} n)^{2} + (10Sn_{1})^{2}/D_{PW}}}$	 L_n: Rating life in hours h n: Rotational speed min⁻¹ n₁: Number of strokes per minute min⁻¹ S: Stroke length mm 		
Rotary and linear motion		$L_{\rm h} = \frac{10^{\rm o}L}{600Sn_{\rm 1}/(\pi D_{\rm PW})}$	D_{PW} : Pitch circle diameter of balls mm $(D_{\mathrm{PW}} \dot{=} 1.15 \mathrm{F_{W}})$ F_{W} : Inscribed circle diameter mm		

Temperature factor

As the allowable contact stress is decreased at operating temperature above 150°C, the basic dynamic load rating should be corrected by the following equation:


Hardness factor

Hardness of a raceway must be 58 to 64 HRC. When it is lower than 58 HRC, correct basic dynamic load rating by the following equation:

$$C_H = f_H C$$
(2)

where, $C_{\rm H}$: Basic dynamic load rating taking into account the hardness, N $f_{\rm H}$: Hardness factor (see Fig. 3)

C: Basic dynamic load rating, N

Load factor

Load applied to a linear motion rolling guide can be larger than theoretical load due to machine vibration or shock. Generally, the applied load is obtained by multiplying it by the load factor indicated in Table 3.

Table 3 Load factor

Operating conditions	$f_{ m w}$
Smooth operation free from shock	1 ~1.2
Normal operation	1.2~1.5
Operation with shock load	1.5~3

Static safety factor

Generally, basic static load rating and static moment rating (or static torque rating) is considered as load at the allowable limit for normal rolling motion. However, static safety factor must be considered according to operating conditions and required performance of the linear motion rolling guide.

Static safety factor can be obtained by the following equation and typical values are indicated in Table 4.

Equation (4) is a representative equation for moment load or torque. Static moment rating and maximum moment load in each direction is applied for the calculation.

$$f_{\rm s} = \frac{C_0}{P_0}$$
 (3)
 $f_{\rm s} = \frac{T_0}{M}$ (4)

where, f_s : Static safety factor

 C_0 : Basic static load rating, N

 P_{o} : Static equivalent load, N

(Or applied load (maximum load))

 T_0 : Static moment rating, N·m (Or static torque rating)

 M_0 : Moment load or torque in each direction, N·m (Maximum moment load or maximum torque)

Table 4 Static safety factor

	Operational condition and static safety factor						
Series	Operation with vibration and/or shock	High operating performance	Normal operating conditions				
Crossed Roller Way	4 ~6	3~5	2.5~3				
Linear Slide Unit	3 ~5	2~4	1 ~3				
Linear Ball Spline	5 ~7	4~6	3 ~5				
Linear Bushing	2.5	2	1.5				
Stroke Rotary Bushing	2.5	2	1.5				
Roller Way & Flat Roller Cage	4 ~6	3~5	2.5~3				

Preload

Objectives of preload

In some cases, the linear motion rolling guide is used with clearance given to the linear motion rolling guide when light motion with small load is required. However, for some applications it may be used with play in the guiding mechanism removed or with preload to increase rigidity.

Preload is applied to the contact parts of a raceway and rolling elements with internal stress generated in advance. When a external load is applied on the preloaded linear motion rolling guide, shock absorbing with this internal stress makes elastic deformation smaller, and its rigidity is increased. (See Fig.4)

Preload setting

Preload amount is determined by considering the characteristics of the machines or equipments on which the linear motion rolling guide is mounted and the nature of load acting on the linear motion rolling guide. The standard amount of preload for linear motion rolling guides is, in general, approx. 1/3 of load when the rolling elements are balls (steel balls) and approx. 1/2 of load when they are rollers (cylindrical rollers). If the linear motion rolling guides are required to have very high rigidity to withstand vibration or fluctuating load, a larger preload may be applied.

Precaution for preload selection

Even when high rigidity must be required, excessive preload should be avoided, because it will produce an excessive stress between rolling elements and raceways, and eventually result in short life of linear motion rolling guides. It is important to apply a proper amount of preload, considering the operational conditions. When using with a large preload, contact IKO.

Linear Bushing and Stroke Rotary Bushing should never be given a large amount of preload.

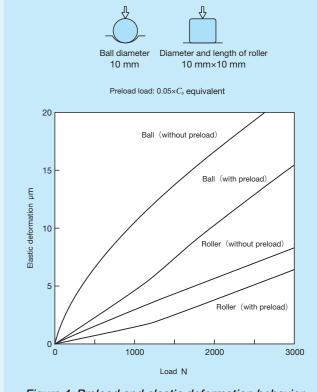


Figure 4 Preload and elastic deformation behavior

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Friction of linear motion rolling guide

The static friction (start-up friction) of linear motion rolling guides is much lower than that of conventional plain guides. Also, the difference between static friction and dynamic friction is small, and frictional resistance varies little when velocity changes. These are excellent features of linear motion rolling guides, and account for their ability to reduce power consumption, suppress operating temperature rise, and increase traveling speed.

Since frictional resistance and variation are small, high speed response characteristics to motion commands and high accuracy positioning can be achieved.

Friction coefficient

The frictional resistance of linear motion rolling guides varies with their model, applied load, velocity and characteristics of lubricant. Generally, lubricant or seals are major factors in determining the frictional resistance in light load or high speed operation, while the amount of load is the major factor in heavy load or low speed operation. The frictional resistance of linear motion rolling guides depends on various factors, but generally the following formula is used.

 $F = \mu P \cdots (3)$

where, F: Frictional resistance, N

 μ : Dynamic friction coefficient

P: Applied load, N

For sealed guides, seal resistance is added to the above value, but this resistance varies greatly depending on the interference amount of seal lip and lubrication conditions.

Where the lubrication and mounting condition are correct and the load is moderate, the friction coefficients of linear motion rolling guide in operation are within the range shown in Table 5. Generally, friction coefficient is large under small load.

Table 5 Friction coefficient

Series name	Dynamic friction coefficient $\mu^{(1)}$
Crossed Roller Way	0.0010~0.0030
Linear Slide Unit	0.0010~0.0020
Linear Ball Spline	0.0020~0.0040
Linear Bushing	0.0020~0.0030
Stroke Rotary Bushing	0.0006~0.0012
Roller Way	0.0020~0.0040
Flat Roller Cage	0.0010~0.0030

Note (1) These friction coefficients do not include seal.

Lubrication

Objectives of lubrication

The objectives of applying lubricant for linear motion rolling guides is to keep raceways, rolling elements, etc. in a linear motion rolling guide from metal contact, and thereby reduce friction and wear preventing heat generation and seizure. When an adequate oil film is formed at the rolling contact area between the raceways and rolling elements, the contact stress due to load can be reduced. To manage the formation of adequate oil film is important for ensuring the reliability of linear motion rolling mechanism.

Selection of lubricant

To obtain the full performance of linear motion rolling guides, it is necessary to select an appropriate lubricant and lubrication method by considering the model, load and velocity of each linear motion rolling guide. However, as compared with plain guides, lubrication of linear motion rolling guides is much simpler. Only a small amount of lubrication oil is needed and replenishment interval is longer, so maintenance can be greatly reduced. Grease and oil are the two most commonly used lubricants for linear motion rolling guides.

Grease lubrication

For linear motion rolling guides, lithium-soap base grease (Consistency No.2 of JIS) is commonly used. For rolling guides operating under heavy load conditions, grease containing extreme pressure additives is recommended.

In clean and high-vacuum environments, where low dust generating performance and low vaporization characteristics are required, greases containing a synthetic-base oil or a soap other than the lithium-soap base are used. For applications in these environments, due consideration is necessary to select a grease that is suitable for the operating conditions of linear motion rolling guide and achieves satisfactory lubrication performance at the same time.

Table 6 Pre-packed grease list

Series name	Pre-packed grease
C-Lube Linear Ball Spline MAG	Alvania EP Grease 2
Linear Ball Spline G	[Shell Lubricants Japan K.K.]

Grease replenishment interval

The quality of any grease will gradually deteriorate as operating time passes. Therefore, periodic replenishment is necessary. Grease replenishment interval varies depending on the operating conditions. A six month interval is generally recommended, and if the machine operation consists of reciprocating motions with many cycles and long strokes, replenishment every three month is recommended.

In addition, linear motion rolling guides in which the lubrication part "C-Lube" is built deliver long-term maintenance free performance. This eliminates the need for lubrication mechanism and workload which used to be necessary for linear motion rolling guides and significantly reduces maintenance cost.

Grease replenishment method

New grease must be supplied through a grease feed device such as a grease nipple until old grease is discharged. After grease is replenished, running-in is performed and excess grease will be discharged to outside of the linear motion rolling guide. Discharged grease must then be removed before starting the operation.

The amount of grease required for standard replenishment is about 1/3 to 1/2 of the free space inside the linear motion rolling guide. When grease is supplied from a grease nipple for the first time, there will be grease lost in the replenishment path. The amount lost should be taken into consideration.

Generally, immediately after grease is replenished, frictional resistance tends to increase. If additional running-in is performed for10 to 20 reciprocating cycles after excess grease is discharged, frictional resistance becomes small and stable. For applications where low frictional resistance is required, the replenishment amount of grease may be reduced, but it must be kept to an appropriate level so as not to give a bad influence on the lubrication performance.

Mixing of different type of grease

Mixing different types of grease may result in changing the properties of base oil, soap base, or additives used, and, in some cases, severely deteriorate the lubrication performance or cause trouble due to chemical changes of additives. Old grease should therefore be removed thoroughly before filling with new grease.

Oil lubrication

For oil lubrication, heavy load requires high oil viscosity and high velocity requires low oil viscosity. Generally, for linear motion rolling guides operating under heavy load, lubrication oil with a viscosity of about 68 mm²/s is used. For linear motion rolling guides under light load at high speed operation, lubrication oil with a viscosity of about 13 mm²/s is used.

Lubrication part "C-Lube"

C-Lube Linear Ball Spline MAG has built-in lubrication part, "C-Lube".

C-Lube is a porous resin with molding formed fine resin powder. It is a lubrication part impregnated with a large amount of lubrication oil in its open pores by capillary inside. Lubrication oil is supplied directly to balls (steel balls), not to the spline shaft. When the balls have contact with C-Lube built in the external cylinder, lubrication oil is supplied to the surface of the balls. As the steel balls circulate, the lubricant is distributed to the loading area along the track rail. This results in adequate lubrication oil being properly maintained in the loading area and lubrication performance will last for a long time.

The surface of C-Lube is always covered with the lubrication oil. Lubrication oil is continuously supplied to the surface of steel balls by surface tension in the contact of C-Lube surface and steel balls.

Table 7 Grease brands used in linear motion rolling guide

Brar	Base oil	Thickener	Consistency	Range of operating temperature (2)	Usage	
Alvania EP Grease 2	[Shell Lubricants Japan K.K.]	Mineral oil	Lithium	284	-20~110	General application with extreme-pressure additive
Alvania Grease S2	[Shell Lubricants Japan K.K.]	Mineral oil	Lithium	283	-25~120	General application
Multemp PS No.2	[KYODO YUSHI CO., LTD.]	Synthetic oil, Mineral oil	Lithium	275	-50~130	General application
LOW Dust- Generation Grease for Clean Environment CG2	[NIPPON THOMPSON CO., LTD.]	Synthetic oil	Urea	280	-40~200	For clean environment Long life
LOW Dust- Generation Grease for Clean Environment CGL	[NIPPON THOMPSON CO., LTD.]	Synthetic oil, Mineral oil	Lithium / Calcium	225	-30~120	For clean environment Low sliding
Klüberalfa GR Y-VAC3 (1)	[NOK KLUEBER]	Synthetic oil	Ethylene tetra-fluoride	No.3	-20~250	For vacuum
IKD Anti-Fretting Grease AF2	[NIPPON THOMPSON CO., LTD.]	Synthetic oil	Urea	285	-50~170	Fretting-proof
6459 Grease N	[Shell Lubricants Japan K.K.]	Mineral oil	Poly-urea	305	-	Fretting-proof

Notes (1) Set replenishment intervals to short.

(2) The Ranges of operating temperature are quoted from the grease manufacturer's cataloged values, but do not guarantee regular use under high temperature environment.

Remarks Check with the chosen grease manufacturer's catalog before use.

For grease for applications other than those listed, please contact IKO.

Precaution for Use

Cleaning and removing fat

Never clean a linear motion rolling guide that has integrated C-lube with organic solvents or white kerosene with fat removing properties.

Precautions regarding oil components

Rust prevention oil or grease is used for the linear motion rolling guide. Therefore, oil may drip or spatter depending on the operating conditions. Consider installing a shielding plate if necessary.

Storage

Store the linear motion rolling guide horizontally indoors in the IKO packing and packaging provided. Avoid high temperature, low temperature and high humidity. In products pre-packed with lubricant, the lubricant will deteriorate over time if products are stored for a long time. Be sure to reapply lubricant before use.

Handling

Do not disassemble the linear motion rolling guide. Also, do not apply excessive force or impact beyond intended use. It may lead to intrusion of foreign substances, or deterioration of accuracy and performance.

Unit Conversion Rate Table

SI, CGS series and gravity system unit cross-reference table

Amount Unit system	Length	Mass	Time	Time Acceleration		Stress and pressure
SI	m	kg	S	m/s²	N	Pa
CGS series	cm	g	S	Gal	dyn	dyn/cm²
Gravity system	m	kgf·s²/m	s	m/s²	kgf	kgf/m²

SI unit conversion

Amount	Unit name	Code	SI conversion rate	SI unit name	Code
Angle	D Min Sec	, , ,	π/180 π/10 800 π/648 000	Radian	rad
Length	Meter Micron Angstrom X ray unit Nautical mile	m μ Å n mile	1 10 ⁻⁶ 10 ⁻¹⁰ ≈1.002 08×10 ⁻¹³ 1852	Meter	m
Area	Square meter Are Hectare	m² a ha	1 10 ² 10 ⁴	Square meter	m²
Volume	Cubic meter Liter	m³ I, L	1 10 ⁻³	Cubic meter	m³
Mass	Kilogram Ton Atomic mass unit	kg t u	1 10 ³ ≈1.660 57×10 ⁻²⁷	Kilogram	kg
Time	Sec Min Hr Day	s min h d	1 60 3 600 86 400	Sec	S
Velocity	Meter per second Knot	m/s kn	1 1 852/3 600	Meter per second	m/s
Frequency and vibration	Number of cycle	S ⁻¹	1	Hertz	Hz
Number of rotations	Rotation per minute	min ⁻¹	1/60	Per second	S ⁻¹
Angular velocity	Radian per second	rad/s	1	Radian per second	rad/s
Acceleration	Meter per second G	m/s² G	1 9.806 65	Meter per second	m/s²
Force	Weight in kg Weight in ton Dyne	kgf tf dyn	9.806 65 9 806.65 10 ⁻⁵	Newton	N
Force moment load	Weight in kg meter	kgf∙m	9.806 65	Newton meter	N⋅m
Stress and pressure	Weight in kg per square meter Weight in kg per square cm Weight in kg per square mm	kgf/m² kgf/cm² kgf/mm²	9.806 65 9.806 65×10 ⁴ 9.806 65×10 ⁶	Pascal	Pa

Energy	Power	Temperature	Viscosity	Kinetic viscosity	Flux	Flux density	Magnetic field intensity
J	W	K	Pa⋅s	m²/s	Wb	Т	A/m
erg	erg/s	${\mathbb C}$	Р	St	Mx	Gs	Oe
kgf∙m	kgf·m/s	°C	kgf·s/m²	m²/s	_	_	_

Amount	Unit name	Code	SI conversion rate	SI unit name	Code
Pressure	Meter water column millimeter of mercury column Torr Air pressure Bar	mH₂O mmHg Torr atm bar	9 806.65 101 325/760 101 325/760 101 325 10 ⁵	Pascal	Pa
Energy	Erg IT calorie Weight in kg meter Kilowatt per hour French horse-power per hour Electron volt	erg calı⊤ kgf·m kW·h PS·h eV	10 ⁻⁷ 4.186 8 9.806 65 3.600×10 ⁶ ≈2.647 79×10 ⁶ ≈1.602 19×10 ⁻¹⁹	Joule	J
Power and motivity	Watt French horse-power Weight in kg meter per second	W PS kgf⋅m/s	1 ≈735.5 9.806 65	Watt	W
Viscosity	Poise Centipoise Weight in kg second per square meter	P cP kgf·s/m²	10 ⁻¹ 10 ⁻³ 9.806 65	Pascal second	Pa∙s
Kinetic viscosity	Stokes Centistokes	St cSt	10 ⁻⁴ 10 ⁻⁶	Square meter per second	m²/s
Temperature	D	${\mathbb C}$	+273.15	Kelvin	K
Radioactivity Exposure radiation dose Absorbed dose Dose equivalent	Rad	Ci R rad rem	3.7×10 ¹⁰ 2.58×10 ⁻⁴ 10 ⁻² 10 ⁻²	Becquerel Coulomb per kg Gray Sievert	Bq C/kg Gy Sv
Flux	Maxwell	Mx	10-8	Weber	Wb
Flux density	Gamma Gauss	γ Gs	10 ⁻⁹ 10 ⁻⁴	Tesla	Т
Magnetic field intensity	Oersted	Oe	$10^{3}/4\pi$	Ampere per meter	A/m
Electric charge Electric potential difference Capacitance (Electric) Resistance (Electric) Conductance Inductance	Farad Ohm Siemens Henry	C V F Ω S H	1 1 1 1 1	Coulomb Volt Farad Ohm Siemens Henry	C V F Ω S H
Current	Ampere	Α	1	Ampere	Α

N - 16

Inch-mm Conversion Table

1 inch=25.4mm

ine	ch									1-20.411111
Fractional number	Decimal number	0″	1″	2″	3″	4″	5″	6″	7″	8″
1 / 64" 1 / 32" 3 / 64" 1 / 16"	0 0.015625 0.031250 0.046875 0.062500	0.397 0.794 1.191 1.588	25.400 25.797 26.194 26.591 26.988	50.800 51.197 51.594 51.991 52.388	76.200 76.597 76.994 77.391 77.788	101.600 101.997 102.394 102.791 103.188	127.000 127.397 127.794 128.191 128.588	152.400 152.797 153.194 153.591 153.988	177.800 178.197 178.594 178.991 179.388	203.200 203.597 203.994 204.391 204.788
5 / 64"	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184
3 / 32"	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581
7 / 64"	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978
1 / 8"	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375
9 / 64"	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772
5 / 32"	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169
11 / 64"	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566
3 / 16"	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962
13 / 64"	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359
7 / 32"	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756
15 / 64"	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153
1 / 4"	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550
17 / 64"	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947
9 / 32"	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344
19 / 64"	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741
5 / 16"	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138
21 / 64"	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534
11 / 32"	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931
23 / 64"	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328
3 / 8"	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725
25 / 64"	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122
13 / 32"	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519
27 / 64"	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916
7 / 16"	0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312
29 / 64"	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709
15 / 32"	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106
31 / 64"	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503
1 / 2"	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900

1 inch=25.4mm

ine	ch									
Fractional number	Decimal number	0″	1″	2″	3″	4″	5″	6″	7″	8″
33 / 64"	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297
17 / 32"	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694
35 / 64"	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091
9 / 16"	0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488
37 / 64"	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884
19 / 32"	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281
39 / 64"	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678
5 / 8"	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075
41 / 64"	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472
21 / 32"	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869
43 / 64"	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266
11 / 16"	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662
45 / 64"	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059
23 / 32"	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456
47 / 64"	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853
3 / 4"	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250
49 / 64"	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647
25 / 32"	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044
51 / 64"	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441
13 / 16"	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838
53 / 64"	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234
27 / 32"	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631
55 / 64"	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028
7 / 8"	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425
57 / 64"	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822
29 / 32"	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219
59 / 64"	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616
15 / 16"	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012
61 / 64"	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409
31 / 32"	0.968750	24.606	50.006	75.406	100.806	126.206	151.606	177.006	202.406	227.806
63 / 64"	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203

IV - 17

Hardness Conversion Table (Reference)

Rockwell	Vickers hardness	Brinell h	ardness	Rockwell	hardness	Shore hardness
C scale hardness				A scale	B scale	
Load 1471N		Standard ball	Tungsten	Load 588.4N	Load 980.7N	
HRC	HV		Carbide ball	Diamond circular cone	Diameter 1/16in ball	HS
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	(739)	83.9	_	91
64	800	_	(722)	83.4	_	88
63	770		(705)	00.0		0.7
	772	_	(705)	82.8	_	87
62	746	_	(688)	82.3	_	85
61	720	_	(670)	81.8	_	83
60	697	_	(654)	81.2	_	81
59	674	_	(634)	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
50	500		505	,		
53	560	(500)	525	77.4	_	71
52	544	(500)	512	76.8	_	69
51	528	(487)	496	76.3	_	68
50	513	(475)	481	75.9	_	67
49	498	(464)	469	75.2	_	66
48	484	451	455	74.7	_	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	_	62
45	446	421	421	73.1	_	60
44	434	409	409	72.5	_	58
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52

38	nore dness
38 372 353 353 69.4 — 4 37 363 344 344 68.9 — 4 36 354 336 336 68.4 (109.0) 6 35 345 327 327 67.9 (108.5) 6 34 336 319 319 67.4 (108.0) 6 33 327 311 311 66.8 (107.5) 6 32 318 301 301 66.3 (107.0) 6 30 302 286 286 65.8 (106.0) 6 30 302 286 286 65.3 (105.5) 6 29 294 279 279 64.7 (104.5) 6 28 286 271 271 64.3 (104.0) 6 27 279 264 264 63.8 (103.0) 6 26 272 258 258 63.3 (102.5) 6 25 266 <th>HS</th>	HS
37 363 344 344 68.9 — 36 36 354 336 336 68.4 (109.0) 67.9 35 345 327 327 67.9 (108.5) 67.4 34 336 319 319 67.4 (108.0) 33 327 311 311 66.8 (107.5) 32 318 301 301 66.3 (107.0) 31 310 294 294 65.8 (106.0) 30 302 286 286 65.3 (105.5) 29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243	
36 354 336 336 68.4 (109.0) 67.9 (108.5) 67.9 (108.5) 67.4 (108.0) 67.2	51
35 345 327 327 67.9 (108.5) 34 336 319 319 67.4 (108.0) 33 327 311 311 66.8 (107.5) 32 318 301 301 66.3 (107.0) 31 310 294 294 65.8 (106.0) 30 302 286 286 65.3 (105.5) 29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7	50
34 336 319 319 67.4 (108.0) 33 327 311 311 66.8 (107.5) 32 318 301 301 66.3 (107.0) 31 310 294 294 65.8 (106.0) 30 302 286 286 65.3 (105.5) 29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8	49
33 327 311 311 66.8 (107.5) 32 318 301 301 66.3 (107.0) 31 310 294 294 65.8 (106.0) 30 302 286 286 65.3 (105.5) 29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 24 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 — 95.5 (14) 213 203 203 — 93.9	48
32 318 301 301 66.3 (107.0) 31 31 310 294 294 65.8 (106.0) 30 30 302 286 286 286 65.3 (105.5) 30 29 294 279 279 64.7 (104.5) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	47
32 318 301 301 66.3 (107.0) 31 31 310 294 294 65.8 (106.0) 30 30 302 286 286 65.3 (105.5) 30 29 294 279 279 64.7 (104.5) 40 28 286 271 271 64.3 (104.0) 40 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 50 25 266 253 253 62.8 (101.5) 50 24 260 247 247 62.4 (101.0) 60 23 254 243 243 62.0 100.0 60 22 248 237 237 61.5 99.0 99.0 21 243 231 231 61.0 98.5 98.5 20 238 226 226 60.5 97.8 60.7 95.5	
31 310 294 294 65.8 (106.0) 4 30 302 286 286 65.3 (105.5) 4 29 294 279 279 64.7 (104.5) 4 28 286 271 271 64.3 (104.0) 4 27 279 264 264 63.8 (103.0) 4 26 272 258 258 63.3 (102.5) 3 25 266 253 253 62.8 (101.5) 3 24 260 247 247 62.4 (101.0) 3 23 254 243 243 62.0 100.0 3 22 248 237 237 61.5 99.0 3 21 243 231 231 61.0 98.5 3 20 238 226 226 60.5 97.8 3 (18) 230 219 219 — 96.7 3 (14) 213	46
30 302 286 286 65.3 (105.5) 29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	44
29 294 279 279 64.7 (104.5) 28 286 271 271 64.3 (104.0) 27 279 264 264 63.8 (103.0) 26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	43
28 286 271 271 64.3 (104.0) 64.3 27 279 264 264 63.8 (103.0) 64.3 26 272 258 258 63.3 (102.5) 62.5 25 266 253 253 62.8 (101.5) 62.4 24 260 247 247 62.4 (101.0) 62.4 23 254 243 243 62.0 100.0 62.4 22 248 237 237 61.5 99.0 61.5 99.0 21 243 231 231 61.0 98.5 62.0 60.5 97.8 (18) 230 219 219 — 96.7 60.5 97.8 (18) 230 219 219 — 96.7 60.5 97.8 60.5 97.8 60.5 97.8 60.5 60.5 97.8 60.5 97.8 60.5 60.5 97.8 60.5 97.8 60.5 97.8 60.5 60.5 97.8	42
27 279 264 264 63.8 (103.0) 626 26 272 258 258 63.3 (102.5) 33 25 266 253 253 62.8 (101.5) 33 24 260 247 247 62.4 (101.0) 33 23 254 243 243 62.0 100.0 33 22 248 237 237 61.5 99.0 33 21 243 231 231 61.0 98.5 33 20 238 226 226 60.5 97.8 33 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 33 (14) 213 203 203 — 93.9 33	41
27 279 264 264 63.8 (103.0) 626 26 272 258 258 63.3 (102.5) 33 25 266 253 253 62.8 (101.5) 33 24 260 247 247 62.4 (101.0) 33 23 254 243 243 62.0 100.0 33 22 248 237 237 61.5 99.0 33 21 243 231 231 61.0 98.5 33 20 238 226 226 60.5 97.8 33 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 33 (14) 213 203 203 — 93.9 33	41
26 272 258 258 63.3 (102.5) 25 266 253 253 62.8 (101.5) 24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	40
25 266 253 253 62.8 (101.5) 3 24 260 247 247 62.4 (101.0) 3 23 254 243 243 62.0 100.0 3 22 248 237 237 61.5 99.0 3 21 243 231 231 61.0 98.5 3 20 238 226 226 60.5 97.8 3 (18) 230 219 219 — 96.7 3 (16) 222 212 212 — 95.5 3 (14) 213 203 203 — 93.9 3	38
24 260 247 247 62.4 (101.0) 23 254 243 243 62.0 100.0 22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	38
22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	37
22 248 237 237 61.5 99.0 21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	
21 243 231 231 61.0 98.5 20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	36
20 238 226 226 60.5 97.8 (18) 230 219 219 — 96.7 (16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	35
(18) 230 219 219 — 96.7 3 (16) 222 212 212 — 95.5 3 (14) 213 203 203 — 93.9 3	35
(16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	34
(16) 222 212 212 — 95.5 (14) 213 203 203 — 93.9	33
(14) 213 203 203 — 93.9	32
	s∠ 31
12/ 204 134 134 — 92.3	31 29
	-9
(10) 196 187 187 — 90.7	28
(8) 188 179 179 — 89.5 ž	27
(6) 180 171 171 — 87.1	26
(4) 173 165 165 — 85.5	25
(2) 166 158 158 — 83.5	24
(0) 160 152 152 — 81.7 :	24

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Tolerances of Shaft Dimensions

dian	cation of neter im		12	c1	12	d	6	е	6	e1	12	f	5	f	6	g	5
Above	Below	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L
_	3	-140	- 240	- 60	- 160	- 20	- 26	- 14	- 20	- 14	-114	- 6	-10	- 6	- 12	- 2	- 6
3	6	-140	- 260	- 70	- 190	- 30	- 38	- 20	- 28	- 20	-140	-10	-15	-10	- 18	- 4	- 9
6	10	-150	- 300	- 80	- 230	- 40	- 49	- 25	- 34	- 25	-175	-13	-19	-13	- 22	- 5	-11
10	18	-150	- 330	- 95	- 275	- 50	- 61	- 32	- 43	- 32	-212	-16	-24	-16	- 27	- 6	-14
18	30	-160	- 370	-110	- 320	- 65	- 78	- 40	- 53	- 40	-250	-20	-29	-20	- 33	- 7	-16
30	40	-170	- 420	-120	- 370	- 80	- 96	- 50	- 66	- 50	-300	-25	-36	-25	- 41	- 9	-20
40	50	-180	- 430	-130	- 380	00	30	30	00	30	300	25	30	25	41	3	20
50	65	-190	- 490	-140	- 440	-100	-119	- 60	– 79	- 60	-360	-30	-43	-30	- 49	-10	-23
65	80	-200	- 500	-150	- 450	100	113	00	13	00	300	30	40	30	40	10	20
80	100	-220	- 570	-170	- 520	-120	-142	- 72	- 94	- 72	-422	-36	-51	-36	- 58	-12	-27
100	120	-240	- 590	-180	- 530	-120	-142	- 12	- 94	- 12	-422	-30	-51	-30	- 56	-12	-21
120	140	-260	- 660	-200	- 600												
140	160	-280	- 680	-210	- 610	-145	-170	- 85	-110	- 85	-485	-43	-61	-43	- 68	-14	-32
160	180	-310	- 710	-230	- 630												
180	200	-340	- 800	-240	- 700												
200	225	-380	- 840	-260	- 720	-170	-199	-100	-129	-100	-560	-50	-70	-50	- 79	-15	-35
225	250	-420	- 880	-280	- 740												
250	280	-480	-1000	-300	- 820	-190	-222	-110	-142	-110	-630	-56	-79	-56	- 88	-17	-40
280	315	-540	-1060	-330	- 850	130	222	110	172	110	000	30	13	30	00	17	40
315	355	-600	-1170	-360	- 930	-210	-246	-125	-161	-125	-695	-62	-87	-62	- 98	-18	-43
355	400	-680	-1250	-400	- 970	210	240	120	101	120	000	02	01	02	00	10	70
400	450	-760	-1390	-440	-1070	-230	-270	-135	-175	-135	-765	-68	-95	-68	-108	-20	-47
450	500	-840	-1470	-480	-1110	200	210	100	173	100	703	00	30	00	100	20	47

Classific diam m			12	js	:5	j:	5	js	66	j	6	j	7	k	5	k	6
Above	Below	Н	L	н	L	Н	L	н	L	н	L	н	L	н	L	н	L
_	3	0	-100	+ 2	- 2	+2	- 2	+ 3	- 3	+ 4	- 2	+ 6	- 4	+ 4	0	+ 6	0
3	6	0	-120	+ 2.5	- 2.5	+3	- 2	+ 4	- 4	+ 6	- 2	+ 8	- 4	+ 6	+1	+ 9	+1
6	10	0	-150	+ 3	- 3	+4	- 2	+ 4.5	- 4.5	+ 7	- 2	+10	- 5	+ 7	+1	+10	+1
10	18	0	-180	+ 4	- 4	+5	- 3	+ 5.5	- 5.5	+ 8	- 3	+12	- 6	+ 9	+1	+12	+1
18	30	0	-210	+ 4.5	- 4.5	+5	- 4	+ 6.5	- 6.5	+ 9	- 4	+13	- 8	+11	+2	+15	+2
30 40	40 50	0	-250	+ 5.5	- 5.5	+6	- 5	+ 8	- 8	+11	- 5	+15	-10	+13	+2	+18	+2
50 65	65 80	0	-300	+ 6.5	- 6.5	+6	- 7	+ 9.5	- 9.5	+12	- 7	+18	-12	+15	+2	+21	+2
80 100	100 120	0	-350	+ 7.5	- 7.5	+6	- 9	+11	-11	+13	- 9	+20	-15	+18	+3	+25	+3
120 140 160	140 160 180	0	-400	+ 9	- 9	+7	-11	+12.5	-12.5	+14	-11	+22	-18	+21	+3	+28	+3
180 200 225	200 225 250	0	-460	+10	-10	+7	-13	+14.5	-14.5	+16	-13	+25	-21	+24	+4	+33	+4
250 280	280 315	0	-520	+11.5	-11.5	+7	-16	+16	-16	+16	-16	+26	-26	+27	+4	+36	+4
315 355	355 400	0	-570	+12.5	-12.5	+7	-18	+18	-18	+18	-18	+29	-28	+29	+4	+40	+4
400 450	450 500	0	-630	+13.5	-13.5	+7	-20	+20	-20	+20	-20	+31	-32	+32	+5	+45	+5

unit: μ m

g	16	h	15	h	16	h	7	h	8	h	19	h	10	h [.]	11	dian	cation of neter im
Н	L	н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Above	Below
- 2	- 8	0	- 4	0	- 6	0	-10	0	-14	0	- 25	0	- 40	0	- 60	_	3
- 4	-12	0	- 5	0	- 8	0	-12	0	-18	0	- 30	0	- 48	0	- 75	3	6
- 5	-14	0	- 6	0	- 9	0	-15	0	-22	0	- 36	0	- 58	0	- 90	6	10
- 6	-17	0	- 8	0	-11	0	-18	0	-27	0	- 43	0	- 70	0	-110	10	18
- 7	-20	0	- 9	0	-13	0	-21	0	-33	0	- 52	0	- 84	0	-130	18	30
- 9	-25	0	-11	0	-16	0	-25	0	-39	0	- 62	0	-100	0	-160	30	40
	20				10		20		00		02		100		100	40	50
-10	-29	0	-13	0	-19	0	-30	0	-46	0	- 74	0	-120	0	-190	50	65
																65	80
-12	-34	0	-15	0	-22	0	-35	0	-54	0	- 87	0	-140	0	-220	80	100
12	01		10				00		01		01		110		220	100	120
																120	140
-14	-39	0	-18	0	-25	0	-40	0	-63	0	-100	0	-160	0	-250	140	160
																160	180
																180	200
-15	-44	0	-20	0	-29	0	-46	0	-72	0	-115	0	-185	0	-290	200	225
																225	250
-17	-49	0	-23	0	-32	0	-52	0	-81	0	-130	0	-210	0	-320	250	280
																280	315
-18	-54	0	-25	0	-36	0	-57	0	-89	0	-140	0	-230	0	-360	315	355
																355	400
-20	-60	0	-27	0	-40	0	-63	0	-97	0	-155	0	-250	0	-400	400	450
																450	500

unit: μm

										unit: μm								
m	15	m	16	n	5	n	6	р	6	dian	cation of neter m							
Н	L	н	L	Н	L	Н	L	Н	L	Above	Below							
+ 6	+ 2	+ 8	+ 2	+ 8	+ 4	+10	+ 4	+ 12	+ 6	_	3							
+ 9	+ 4	+12	+ 4	+13	+ 8	+16	+ 8	+ 20	+12	3	6							
+12	+ 6	+15	+ 6	+16	+10	+19	+10	+ 24	+15	6	10							
+15	+ 7	+18	+ 7	+20	+12	+23	+12	+ 29	+18	10	18							
+17	+ 8	+21	+ 8	+24	+15	+28	+15	+ 35	+22	18	30							
+20	+ 9	+25	+ 9	+28	+17	+33	+17	+ 42	+26	30	40							
120	1 3	120	' 3	120	' 17	1 00	117	1 72	120	40	50							
+24	+11	+30	+11	+33	+20	+39	+20	+ 51	+32	50	65							
. 24		100	' ''	1 00	1 20	1 00	120	. 01	102	65	80							
+28	+13	+35	+13	+38	+23	+45	+23	+ 59	+37	80	100							
T20	T 13	+33	T 13	T30	+23	T43	T23	+ 39	+31	100	120							
										120	140							
+33	+15	+40	+15	+45	+27	+52	+27	+ 68	+43	140	160							
										160	180							
										180	200							
+37	+17	+46	+17	+51	+31	+60	+31	+ 79	+50	200	225							
										225	250							
+43	+20	+52	+20	+57	+34	+66	+34	+ 88	+56	250	280							
. 10	. 20	. 02	. 20	. 01	. 0 7	. 00	. 0 7	. 00	. 00	280	315							
+46	+21	+57	+21	+62	+37	+73	+37	+ 98	+62	315	355							
		. • .								355	400							
+50	+23	+63	+23	+67	+40	+80	+40	+108	+68	400	450							
. 00	. 20	. 00	. 20	. 01	. 10	. 00	. 10	. 700	. 00	450	500							

Tolerances of Housing Hole Dimensions

Classific dian m	cation of neter m	B ⁻	12	E	7	E¹	11	E1	12	F	6	F	7	G	6	G	7
Above	Below	Н	L	Н	L	н	L	Н	L	н	L	н	L	Н	L	н	L
_	3	+ 240	+140	+ 24	+ 14	+ 74	+ 14	+114	+ 14	+ 12	+ 6	+ 16	+ 6	+ 8	+ 2	+12	+ 2
3	6	+ 260	+140	+ 32	+ 20	+ 95	+ 20	+140	+ 20	+ 18	+10	+ 22	+10	+12	+ 4	+16	+ 4
6	10	+ 300	+150	+ 40	+ 25	+115	+ 25	+175	+ 25	+ 22	+13	+ 28	+13	+14	+ 5	+20	+ 5
10	18	+ 330	+150	+ 50	+ 32	+142	+ 32	+212	+ 32	+ 27	+16	+ 34	+16	+17	+ 6	+24	+ 6
18	30	+ 370	+160	+ 61	+ 40	+170	+ 40	+250	+ 40	+ 33	+20	+ 41	+20	+20	+ 7	+28	+ 7
30	40	+ 420	+170	+ 75	+ 50	+210	+ 50	+300	+ 50	+ 41	+25	+ 50	+25	+25	+ 9	+34	+ 9
40	50	+ 430	+180	1 73	1 30	1210	1 30	1 000	1 30	'	120	1 30	120	120	1 3	104	1 3
50	65	+ 490	+190	+ 90	+ 60	+250	+ 60	+360	+ 60	+ 49	+30	+ 60	+30	+29	+10	+40	+10
65	80	+ 500	+200	. 50	. 00	1 200	. 00	1 000	. 00	. 40	1 00	. 00	1 00	1 20	. 10	1 40	. 10
80	100	+ 570	+220	+107	+ 72	+292	+ 72	+422	+ 72	+ 58	+36	+ 71	+36	+34	+12	+47	+12
100	120	+ 590	+240	1 107	1 12	1 232	1 12	1422	1 12	1 30	1 30	1 /1	1 30	1 04	1 12	147	1 12
120	140	+ 660	+260														
140	160	+ 680	+280	+125	+ 85	+335	+ 85	+485	+ 85	+ 68	+43	+ 83	+43	+39	+14	+54	+14
160	180	+ 710	+310														
180	200	+ 800	+340														
200	225	+ 840	+380	+146	+100	+390	+100	+560	+100	+ 79	+50	+ 96	+50	+44	+15	+61	+15
225	250	+ 880	+420														
250	280	+1000	+480	+162	+110	+430	+110	+630	+110	+ 88	+56	+108	+56	+49	+17	+69	+17
280	315	+1060	+540	.02		100		300					- 50	10			
315	355	+1170	+600	+182	+125	+485	+125	+695	+125	+ 98	+62	+119	+62	+54	+18	+75	+18
355	400	+1250	+680		5							3		. • .			
400	450	+1390	+760	+198	+135	+535	+135	+765	+135	+108	+68	+131	+68	+60	+20	+83	+20
450	500	+1470	+840					. 00			- 00	.01	- 50			"	

Classific diam m		JS	67	J	7	К	5	К		К	7	N	16	N	17	N	16
Above	Below	Н	L	н	L	н	L	Н	L	Н	L	н	L	Н	L	Н	L
_	3	+ 5	- 5	+ 4	- 6	0	- 4	0	- 6	0	-10	- 2	- 8	-2	-12	- 4	-10
3	6	+ 6	- 6	+ 6	- 6	0	- 5	+2	- 6	+ 3	- 9	- 1	- 9	0	-12	- 5	-13
6	10	+ 7	- 7	+ 8	- 7	+1	- 5	+2	- 7	+ 5	-10	- 3	-12	0	-15	- 7	-16
10	18	+ 9	- 9	+10	- 8	+2	- 6	+2	- 9	+ 6	-12	- 4	-15	0	-18	- 9	-20
18	30	+10	-10	+12	- 9	+1	- 8	+2	-11	+ 6	-15	- 4	-17	0	-21	-11	-24
30 40	40 50	+12	-12	+14	-11	+2	- 9	+3	-13	+ 7	-18	- 4	-20	0	-25	-12	-28
50 65	65 80	+15	-15	+18	-12	+3	-10	+4	-15	+ 9	-21	- 5	-24	0	-30	-14	-33
80 100	100 120	+17	-17	+22	-13	+2	-13	+4	-18	+10	-25	- 6	-28	0	-35	-16	-38
120 140 160	140 160 180	+20	-20	+26	-14	+3	-15	+4	-21	+12	-28	- 8	-33	0	-40	-20	-45
180	200																
200 225	225 250	+23	-23	+30	-16	+2	-18	+5	-24	+13	-33	- 8	-37	0	-46	-22	-51
250 280	280 315	+26	-26	+36	-16	+3	-20	+5	-27	+16	-36	- 9	-41	0	-52	-25	-57
315 355	355 400	+28	-28	+39	-18	+3	-22	+7	-29	+17	-40	-10	-46	0	-57	-26	-62
400 450	450 500	+31	-31	+43	-20	+2	-25	+8	-32	+18	-45	-10	-50	0	-63	-27	-67

 ınitı	•	,	r

Н	16	Н	7	Н	8	н	9	H1	10	H.	11	J	S6	J	6	dian	cation of neter m
Н	L	н	L	Н	L	н	L	н	L	н	L	н	L	Н	L	Above	Below
+ 6	0	+10	0	+14	0	+ 25	0	+ 40	0	+ 60	0	+ 3	- 3	+ 2	-4	_	3
+ 8	0	+12	0	+18	0	+ 30	0	+ 48	0	+ 75	0	+ 4	- 4	+ 5	-3	3	6
+ 9	0	+15	0	+22	0	+ 36	0	+ 58	0	+ 90	0	+ 4.5	- 4.5	+ 5	-4	6	10
+11	0	+18	0	+27	0	+ 43	0	+ 70	0	+110	0	+ 5.5	- 5.5	+ 6	-5	10	18
+13	0	+21	0	+33	0	+ 52	0	+ 84	0	+130	0	+ 6.5	- 6.5	+ 8	-5	18	30
+16	0	+25	0	+39	0	+ 62	0	+100	0	+160	0	+ 8	- 8	+10	-6	30	40
																40	50
+19	0	+30	0	+46	0	+ 74	0	+120	0	+190	0	+ 9.5	- 9.5	+13	-6	50 65	65 80
1.00	_	105	_	1.54	0	. 07	0	1440	_	1,000		144	44	140	_	80	100
+22	0	+35	0	+54	0	+ 87	0	+140	0	+220	0	+11	-11	+16	-6	100	120
																120	140
+25	0	+40	0	+63	0	+100	0	+160	0	+250	0	+12.5	-12.5	+18	-7	140	160
																160	180
																180	200
+29	0	+46	0	+72	0	+115	0	+185	0	+290	0	+14.5	-14.5	+22	-7	200	225
																225	250
+32	0	+52	0	+81	0	+130	0	+210	0	+320	0	+16	-16	+25	-7	250	280
1 02	U	1 32	U	101	U	1 100	U	1210	U	1 320	U	1 10	10	1 23	,	280	315
+36	0	+57	0	+89	0	+140	0	+230	0	+360	0	+18	-18	+29	-7	315	355
1 00	U	101	0	100	U	1 170	U	1 200	0	1 000	U	1 10	10	120	'	355	400
+40	0	+63	0	+97	0	+155	0	+250	0	+400	0	+20	-20	+33	-7	400	450
1 40	0	100	0	1 31		1 100	0	1 200		1 700	0	1 20	20	1 00	'	450	500

unit: μ m

N	7	Р	6	Р	7	R	7	S	7	Classific diam m	neter
Н	L	Н	L	Н	L	Н	L	Н	L	Above	Below
- 4	-14	- 6	-12	- 6	- 16	- 10	- 20	- 14	- 24	_	3
- 4	-16	- 9	-17	- 8	- 20	- 11	- 23	- 15	- 27	3	6
- 4	-19	-12	-21	- 9	- 24	- 13	- 28	- 17	- 32	6	10
- 5	-23	-15	-26	-11	- 29	- 16	- 34	- 21	- 39	10	18
- 7	-28	-18	-31	-14	- 35	- 20	- 41	- 27	- 48	18	30
- 8	-33	-21	-37	-17	- 42	- 25	- 50	- 34	- 59	30	40
	33	21	31	17	42	23	30	04	33	40	50
- 9	-39	-26	-45	-21	- 51	- 30	- 60	- 42	- 72	50	65
3	00	20	40	21	31	- 32	- 62	- 48	- 78	65	80
-10	-45	-30	-52	-24	- 59	- 38	- 73	- 58	- 93	80	100
-10	-43	-30	-52	-24	- 39	- 41	- 76	- 66	- 101	100	120
						- 48	- 88	- 77	-117	120	140
-12	-52	-36	-61	-28	- 68	- 50	- 90	- 85	-125	140	160
						- 53	- 93	- 93	-133	160	180
						- 60	-106	-105	-151	180	200
-14	-60	-41	-70	-33	- 79	- 63	-109	-113	-159	200	225
						- 67	-113	-123	-169	225	250
-14	-66	-47	-79	-36	- 88	- 74	-126	-138	-190	250	280
	00	"	, 0	00	00	- 78	-130	-150	-202	280	315
-16	-73	-51	-87	-41	- 98	- 87	-144	-169	-226	315	355
	. 0		.			- 93	-150	-187	-244	355	400
-17	-80	-55	-95	-45	-108	-103	-166	-209	-272	400	450
					, , ,	-109	-172	-229	-292	450	500

Model Code Index	
-------------------------	--

Model code	Series name	Catalog name	Page	Model code	Series name	Catalog name	Page
				LM···F AJ	Linear Bushing	RED	I -161
	В			LM···F OP	Linear Bushing	RED	I -161
BG	Stroke Rotary Cage	RED	I -192	LM…F UU	Linear Bushing	RED	I -163
ВК…А	Miniature Stroke Rotary Bushing	RED	I -187	LM…F UU AJ	Linear Bushing	RED	I I-163
BSP···SL	Precision Linear Slide Unit	RED	II- 89	LM…F UU OP	Linear Bushing	RED	I -163
BSPG···SL	Precision Linear Slide Unit	RED	I - 91	LM…N	Linear Bushing	RED	I -147
BSR···SL	Precision Linear Slide Unit	RED	II- 93	LM···N AJ	Linear Bushing	RED	∏-147
BSU···A	Linear Slide Unit	RED	II- 99	LM···N F	Linear Bushing	RED	Ⅱ-161
BWU	High Rigidity Precision Linear Slide Unit	RED	I - 81	LM···N F AJ	Linear Bushing	RED	I -161
	Linear olide offic			LM···N F OP	Linear Bushing	RED	Ⅱ-161
	С			LM…N F UU	Linear Bushing	RED	Ⅱ-163
				LM···N F UU AJ	Linear Bushing	RED	Ⅱ-163
CRW	Crossed Roller Way	RED	Ⅱ- 33	LM···N F UU OP	Linear Bushing	RED	I -163
CRWSL	Crossed Roller Way	RED	Ⅱ- 33	LM···N OP	Linear Bushing	RED	I -147
CRWG	Anti-Creep Cage Crossed Roller Way	RED	Ⅱ- 27	LM…N UU	Linear Bushing	RED	I -151
CRWG···H	Anti-Creep Cage Crossed Roller Way H	RED	I - 31	LM···N UU AJ	Linear Bushing	RED	I -151
CRWM	Crossed Roller Way	RED	I - 49	LM···N UU OP	Linear Bushing	RED	I -151
CRWU	Crossed Roller Way Unit	RED	II- 63	LM···OP	Linear Bushing	RED	I -147
CRWUR	Crossed Roller Way Unit	RED	Ⅱ- 67	LM…UU	Linear Bushing	RED	I -151
CRWURS	Crossed Roller Way Unit	RED	I - 71	LM…UU AJ	Linear Bushing	RED	I -151
CRWUG	Anti-Creep Cage Crossed Roller Way Unit	RED	II- 61	LM…UU OP	Linear Bushing	RED	I -151
	-			LMB	Linear Bushing	RED	Ⅱ-159
	F			LMB···AJ	Linear Bushing	RED	I -159
FT	Flat Dallay Cana	DED	I -211	LMB···N	Linear Bushing	RED	Ⅱ-159
FT	Flat Roller Cage	RED		LMB···N AJ	Linear Bushing	RED	I -159
FT···N	Flat Roller Cage	RED	II-211	LMB···N OP	Linear Bushing	RED	Ⅱ-159
FT···V	Flat Roller Cage	RED	II-211	LMBOP	Linear Bushing	RED	I -159
FTWVA	Flat Roller Cage	RED	II-212	LME	Linear Bushing	RED	Ⅱ-155
FTW···VA	Flat Roller Cage	RED	I -212	LME···AJ	Linear Bushing	RED	Ⅱ-155
	0			LME···F	Linear Bushing	RED	Ⅱ-165
	G			LME···F AJ	Linear Bushing	RED	Ⅱ-165
GSN	Roller Way	RED	Ⅱ-204	LME···F OP	Linear Bushing	RED	Ⅱ-165
				LME···F UU	Linear Bushing	RED	Ⅱ-167
	L			LME…F UU AJ	Linear Bushing	RED	Ⅱ-167
LM	Linear Rushing	RED	I -147	LME···F UU OP	Linear Bushing	RED	Ⅱ-167
	Linear Bushing			LME···N	Linear Bushing	RED	Ⅱ-155
LME	Linear Bushing	RED	Ⅱ-147	LME···N AJ	Linear Bushing	RED	I -155
LM···F	Linear Bushing	RED	Ⅱ-161	LME···N F	Linear Bushing	RED	Ⅱ-165
				LME···N F AJ	Linear Bushing	RED	I -165

Model code	Series name	Catalog name	Page	Model code	Series name	Catalog name	Page
LME···N F OP	Linear Bushing	RED	Ⅱ-165	LRXS	Linear Roller Way Super X	BLUE	Ⅱ-209
LME···N F UU	Linear Bushing	RED	Ⅱ-167	LRXSC	Linear Roller Way Super X	BLUE	Ⅱ-209
LME···N F UU AJ	Linear Bushing	RED	Ⅱ-167	LRXSG	Linear Roller Way Super X	BLUE	Ⅱ-209
LME···N F UU OP	Linear Bushing	RED	Ⅱ-167	LSAG	Linear Ball Spline G	RED	I -123
LME···N OP	Linear Bushing	RED	I I-155	LSAGF	Linear Ball Spline G	RED	I -127
LME···N UU	Linear Bushing	RED	Ⅱ-157	LSAGFL	Linear Ball Spline G	RED	I -127
LME···N UU AJ	Linear Bushing	RED	Ⅱ-157	LSAGFLT	Linear Ball Spline G	RED	I -127
LME···N UU OP	Linear Bushing	RED	Ⅱ-157	LSAGFT	Linear Ball Spline G	RED	I -127
LME···OP	Linear Bushing	RED	Ⅱ-155	LSAGL	Linear Ball Spline G	RED	I -123
LME···UU	Linear Bushing	RED	Ⅱ-157	LSAGLT	Linear Ball Spline G	RED	I -123
LME…UU AJ	Linear Bushing	RED	Ⅱ-157	LSAGT	Linear Ball Spline G	RED	I -123
LME···UU OP	Linear Bushing	RED	Ⅱ-157	LWE	Linear Way E	BLUE	I - 75
LMG	Linear Bushing G	RED	I -139	LWEQ	Low Decibel Linear Way E	BLUE	I - 75
LMGT	Linear Bushing G	RED	Ⅱ-139	LWESL	Linear Way E	BLUE	Ⅱ- 75
LMS	Miniature Linear Bushing	RED	I -172	LWEC	Linear Way E	BLUE	I - 75
LMS···F	Miniature Linear Bushing	RED	I -172	LWECSL	Linear Way E	BLUE	I - 75
LMS···F UU	Miniature Linear Bushing	RED	Ⅱ-172	LWEG	Linear Way E	BLUE	Ⅱ- 75
LMSUU	Miniature Linear Bushing	RED	Ⅱ-172	LWEGSL	Linear Way E	BLUE	Ⅱ- 75
LMSL	Miniature Linear Bushing	RED	Ⅱ-172	LWES	Linear Way E	BLUE	I I- 83
LMSL···F	Miniature Linear Bushing	RED	Ⅱ-172	LWESQ	Low Decibel Linear Way E	BLUE	I I- 83
LMSL···F UU	Miniature Linear Bushing	RED	Ⅱ-172	LWESSL	Linear Way E	BLUE	I I- 83
LMSLUU	Miniature Linear Bushing	RED	Ⅱ-172	LWESC	Linear Way E	BLUE	I I- 83
LRWM	Linear Way Module	BLUE	Ⅱ-243	LWESCSL	Linear Way E	BLUE	I I- 83
LRWX···B	Linear Roller Way X	BLUE	Ⅱ-227	LWESG	Linear Way E	BLUE	I I- 83
LRWXH	Linear Roller Way X	BLUE	Ⅱ-229	LWESGSL	Linear Way E	BLUE	I I- 83
LRX	Linear Roller Way Super X	BLUE	Ⅱ-191	LWET	Linear Way E	BLUE	I - 79
LRXC	Linear Roller Way Super X	BLUE	Ⅱ-191	LWETQ	Low Decibel Linear Way E	BLUE	I - 79
LRXD	Linear Roller Way Super X	BLUE	Ⅱ-199	LWETSL	Linear Way E	BLUE	I - 79
LRXDSL	Linear Roller Way Super X	BLUE	Ⅱ-199	LWETC	Linear Way E	BLUE	I - 79
LRXDC	Linear Roller Way Super X	BLUE	Ⅱ-199	LWETCSL	Linear Way E	BLUE	I I- 79
LRXDCSL	Linear Roller Way Super X	BLUE	Ⅱ-199	LWETG	Linear Way E	BLUE	I - 79
LRXDG	Linear Roller Way Super X	BLUE	Ⅱ-199	LWETGSL	Linear Way E	BLUE	I - 79
LRXDGSL	Linear Roller Way Super X	BLUE	I -199	LWFF	Linear Way F	BLUE	I I-151
LRXDL	Linear Roller Way Super X	BLUE	Ⅱ-207	LWFH	Linear Way F	BLUE	I -149
LRXG	Linear Roller Way Super X	BLUE	I -191	LWFS	Linear Way F	BLUE	I -153
LRXH	Linear Roller Way Super X	BLUE	I -191	LWFSSL	Linear Way F	BLUE	I I-153
LRXHC	Linear Roller Way Super X	BLUE	I -191	LWH···B	Linear Way H	BLUE	I I-107
LRXHG	Linear Roller Way Super X	BLUE	I -191	LWH···M	Linear Way H	BLUE	Ⅱ-107
LRXL	Linear Roller Way Super X	BLUE	I -197	LWHMU	Linear Way H	BLUE	Ⅱ-107

Note: BLUE denotes CAT-1604E, while RED denotes CAT-1605E.

Note: BLUE denotes CAT-1604E, while RED denotes CAT-1605E.

Model	Code	Index
model	0040	HIGON

WH-SL Linear Way H BLUE II-127 LWLG-WB Linear Way L BLUE II-128 LWLG-WB Linear Way L BLUE II-129 LWLG-WB Linear Way L BLUE II-129 LWLG-WB Linear Way L BLUE II-129 LWLG-WN LInear Way Module BLUE II-129 LWLG-WN LInear Way U BLUE II-129 LWLG-WN LInear Way U BLUE II-129 LWLG-WN LInear Way U BLUE II-129 LWLG-WN LINEAR WAY W BLUE II-121 LWLG-WN LINEAR WAY W BLUE II-127 LWLG-WN LINEAR WAY W BLUE II-131 MEC C-Lube Linear Way ME BLUE II-131 MEC C-Lube Linear Way ME BLUE II-131 MEG C-Lube Linear Way ME BLUE II-131 MEG C-Lube Linear Way ME BLUE II-131 MES C-Lube	Model code	Series name	Catalog name	Page	Model code	Series name	Catalog name	Page
WHMS-SL		L			LWLFG···B	Linear Way L	BLUE	II- 30
Linear Way H Linear Way H BLUE 1-121 LWLG				T 107	LWLFGN	Linear Way L	BLUE	I I- 3
Linear Way H Linear Way ME Linear Way		-			LWLGB	Linear Way L	BLUE	Ⅱ- 2
Linear Way H		-			LWLGN	Linear Way L	BLUE	Ⅱ- 2
LWHDMU Linear Way H BLUE		-			LWLM	Linear Way Module	BLUE	I I-24
Description		-			LWU···B	Linear Way U	BLUE	I -16
Mag		-						
WHDG Linear Way H BLUE II-123 MAG C-Lube Linear Ball Spline MAG RED II-1 WHDG···SL Linear Way H BLUE II-121 MAGF C-Lube Linear Ball Spline MAG RED II-1 WHG Linear Way H BLUE II-107 MAGFT C-Lube Linear Ball Spline MAG RED II-1 WHS···B Linear Way H BLUE II-127 MAGL C-Lube Linear Ball Spline MAG RED II-1 WHS···MS Linear Way H BLUE II-127 MAGLT C-Lube Linear Ball Spline MAG RED II-1 WHS···SL Linear Way H BLUE II-127 MAGCT C-Lube Linear Ball Spline MAG RED II-1 WHSG Linear Way H BLUE II-127 MAGCT C-Lube Linear Way ME BLUE II-1 WHSG Linear Way H BLUE II-113 MEC C-Lube Linear Way ME BLUE II-1 WHT····M Linear Way H BLUE II-113 MEG C-Lube Linear Way ME BLUE II-1 <td></td> <td>j</td> <td>BLUE</td> <td></td> <td></td> <td></td> <td></td> <td></td>		j	BLUE					
MAG C-Lube Linear Ball Spline MAG RED II-12 MAGF C-Lube Linear Ball Spline MAG RED II-12 MAGF C-Lube Linear Ball Spline MAG RED II-12 MAGF C-Lube Linear Ball Spline MAG RED II-12 MAGGT C-Lube Linear Way ME BLUE II-12 MAGGT C-Lube Linear Way ME BLUE II-13 MEC C-Lube Linear Way ME BLUE II-13 MEC C-Lube Linear Way ME BLUE II-13 MEC C-Lube Linear Way ME BLUE II-13 MEG C-Lube Linear Way ME BLUE II-14 MES C-Lube Linear Way ME BLUE II-15 MET C-Lube Linear Way M		-	BLUE	Ⅱ-121		M		
MAGF C-Lube Linear Ball Spline MAG RED II-1	LWHDG	Linear Way H	BLUE	I -123	MAG	C-Lube Linear Ball Spline MAG	RED	I -12
WHS	LWHDG…SL	Linear Way H	BLUE	Ⅱ-121	MAGF	C-Lube Linear Ball Spline MAG	RED	I I-12
Linear Way H	LWHG	Linear Way H	BLUE	Ⅱ-107			RED	I I-12
LWHSMU Linear Way H BLUE II-127 MAGLT C-Lube Linear Ball Spline MAG RED II-1 LWHSMU Linear Way H BLUE II-127 MAGT C-Lube Linear Ball Spline MAG RED II-1 LWHSG Linear Way H BLUE II-127 ME C-Lube Linear Way ME BLUE II-1 LWHT Linear Way H BLUE II-113 MEC C-Lube Linear Way ME BLUE II-1 LWHTB Linear Way H BLUE II-113 MEG C-Lube Linear Way ME BLUE II-1 LWHTMU Linear Way H BLUE II-113 MEG C-Lube Linear Way ME BLUE II-113 LWHT	LWHSB	Linear Way H	BLUE	Ⅱ-127		•		I -12
MAGT C-Lube Linear Way ME BLUE II-127 MAGT C-Lube Linear Way ME BLUE II-127 ME C-Lube Line	LWHSM	Linear Way H	BLUE	I -127		•		Ⅱ-12
ME	LWHS…MU	Linear Way H	BLUE	Ⅱ-127		·		Ⅱ-12
Linear Way H Linear Way L Li	LWHS…SL	Linear Way H	BLUE	Ⅱ-127				I - 7
LWHT	LWHSG	Linear Way H	BLUE	I -127		•		<u> </u>
LWHT***B Linear Way H BLUE II-113 MEC***SL C-Lube Linear Way ME BLUE II-113 MEG***SL C-Lube Linear Way ME BLUE II-113 MEG***SL C-Lube Linear Way ME BLUE II-114 MEG***SL C-Lube Linear Way ME BLUE II-115 MEG***SL C-Lube Linear Way ME BLUE II-115 MES***C-Lube Linear Way ME BLUE II-115 MES***C-	LWHT	Linear Way H	BLUE	I -113		_		Π-7
LWHTMU Linear Way H BLUE II-113 MEG C-Lube Linear Way ME BLUE II- LWHTSL Linear Way H BLUE II-113 MEG C-Lube Linear Way ME BLUE II- LWHTG Linear Way H BLUE II-115 MES C-Lube Linear Way ME BLUE II- LWHY Linear Way L BLUE II-23 MESC C-Lube Linear Way ME BLUE II- LWLB Linear Way L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLB Linear Way L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLN Linear Way L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLY Linear Way L BLUE II-25 MET C-Lube Linear Way ME BLUE II- LWLY Linear Way L BLUE II-25 MET C-Lube Linear Way ME BLUE II- LWLY Linear Way L BLUE II-25 MET C-Lube Linear Way ME BLUE II- LWLY Linear Way L BLUE II-25 MET C-Lube Linear Way ME BLUE II- LWLY Linear Way L BLUE II-25 MET C-Lube Linear Way ME BLUE II- LWLC Linear Way L BLUE II-25 METC C-Lube Linear Way ME BLUE II- LWLCB Linear Way L BLUE II-25 METG C-Lube Linear Way ME BLUE II- LWLCN Linear Way L BLUE II-31 METG. C-Lube Linear Way ME BLUE II- LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way ME BLUE II- LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way MH BLUE II- LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way MH BLUE II- LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MH C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1 LWLFB Linear Way L BLUE II-31 MHD C-Lube Linear Way MH BLUE II-1	LWHT···B	Linear Way H	BLUE	I -113		-		_
LWHTRU Linear Way H BLUE II-113 MEGSL C-Lube Linear Way ME BLUE II- LWHY Linear Way H BLUE II-113 MESC C-Lube Linear Way ME BLUE II- LWHY Linear Way L BLUE II-131 MESC C-Lube Linear Way ME BLUE II- LWLB Linear Way L BLUE II-23 MESC C-Lube Linear Way ME BLUE II- LWLB Linear Way L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLB LINEAR WAY L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLB LINEAR WAY L BLUE II-25 MESG C-Lube Linear Way ME BLUE II- LWLB LINEAR WAY L BLUE II-25 METC C-Lube Linear Way ME BLUE II- LWLB LINEAR WAY L BLUE II-25 METC C-Lube Linear Way ME BLUE II- LWLCB LINEAR WAY L BLUE II-25 METC C-Lube Linear Way ME BLUE II- LWLCB LINEAR WAY L BLUE II-25 METC C-Lube Linear Way ME BLUE II- LWLCB LINEAR WAY L BLUE II-31 METC C-Lube Linear Way ME BLUE II- METC C-Lube	LWHT···M	Linear Way H	BLUE	I -113		-		_
LWHT:—SL Linear Way H BLUE II—113 WES C-Lube Linear Way ME BLUE II— LWHY Linear Way H BLUE II—131 WESC C-Lube Linear Way ME BLUE II— LWL:—WHY Linear Way L BLUE II—23 WESC C-Lube Linear Way ME BLUE II— LWL:—B Linear Way L BLUE II—25 WESG C-Lube Linear Way ME BLUE II— LWL:—B CS Linear Way L BLUE II—27 WESG C-Lube Linear Way ME BLUE II— LWL:—Y Linear Way L BLUE II—27 WESG C-Lube Linear Way ME BLUE II— LWL:—Y Linear Way L BLUE II—23 MET C-Lube Linear Way ME BLUE II— LWLC:—B Linear Way L BLUE II—23 METC C-Lube Linear Way ME BLUE II— LWLC:—B Linear Way L BLUE II—25 METC C-Lube Linear Way ME BLUE II— LWLC:—B Linear Way L BLUE II—25 METC C-Lube Linear Way ME BLUE II— LWLC:—N Linear Way L BLUE II—31 METC C-Lube Linear Way ME BLUE II— LWLF:—B Linear Way L BLUE II—31 METG C-Lube Linear Way ME BLUE II— LWLF:—B Linear Way L BLUE II—31 MH C-Lube Linear Way ME BLUE II—1 MH C-Lube Linear Way ME BLUE II—1 MH C-Lube Linear Way ME BLUE II—1 MH:—MU C-Lube Linear Way ME BLUE II—1 MHD:—M C-Lube Linear Way ME BLUE II—1 MHD:—M C-Lube Linear Way ME BLUE II—1	LWHTMU	Linear Way H	BLUE	I -113		•		_
LINHTG Linear Way H BLUE II-115 LINHY Linear Way H BLUE II-131 MESC C-Lube Linear Way ME BLUE II- LWL Linear Way L BLUE II- 25 MESC C-Lube Linear Way ME BLUE II- LWL-WB Linear Way L BLUE II- 25 MESG C-Lube Linear Way ME BLUE II- LWL-WB CS Linear Way L BLUE II- 27 MESG C-Lube Linear Way ME BLUE II- LWL-WH LINEAR WAY L BLUE II- 25 MET C-Lube Linear Way ME BLUE II- LWL-WY Linear Way L BLUE II- 23 METSL C-Lube Linear Way ME BLUE II- LWLC-WB Linear Way L BLUE II- 25 METC C-Lube Linear Way ME BLUE II- LWLC-WB Linear Way L BLUE II- 25 METC C-Lube Linear Way ME BLUE II- LWLC-WB Linear Way L BLUE II- 25 METC C-Lube Linear Way ME BLUE II- METCSL C-Lube Linear Way ME BLUE II- METCSL C-Lube Linear Way ME BLUE II- METGSL C-Lube Linear Way	LWHTSL	Linear Way H	BLUE	I -113		-		
LWHY Linear Way H BLUE II-131 MESC C-Lube Linear Way ME BLUE II- LWL···B Linear Way L BLUE II- 25 MESG C-Lube Linear Way ME BLUE II- LWL···B CS Linear Way L BLUE II- 27 MESG C-Lube Linear Way ME BLUE II- LWL···N Linear Way L BLUE II- 25 MESG C-Lube Linear Way ME BLUE II- LWL···Y Linear Way L BLUE II- 23 MET C-Lube Linear Way ME BLUE II- LWLC Linear Way L BLUE II- 23 MET C-Lube Linear Way ME BLUE II- LWLC METC C-Lube Linear Way ME BLUE II- LWLC METC C-Lube Linear Way ME BLUE II- METC C-Lube Linear Way ME BLUE II- LWLC METC C-Lube Linear Way ME BLUE II- METC C-Lube Linear Way ME BLUE II- METC C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- MH C-Lube Linear Way MH BLUE II- MH MH···M C-Lube Linear Way MH BLUE II- MHO MHO C-Lube Linear Way MH BLUE II- MHO MHO C-Lube Linear Way MH BLUE II- MHO MHO MHO MESC C-Lube Linear Way MH BLUE II- METG METG MESC MESC C-Lube Linear Way ME BLUE II- METG METG MESC MESC MESC MESC MESC MESC MESC MESC	LWHTG	Linear Way H	BLUE	I -115		-		
LWL Linear Way L BLUE II - 23 LWL···B Linear Way L BLUE II - 25 LWL···B CS Linear Way L BLUE II - 27 LWL···N Linear Way L BLUE II - 25 LWL···Y Linear Way L BLUE II - 23 LWLC··B Linear Way L BLUE II - 23 LWLC··B Linear Way L BLUE II - 23 LWLC··B Linear Way L BLUE II - 25 LWLC··B Linear Way L BLUE II - 25 LWLC··N Linear Way L BLUE II - 25 LWLF··B Linear Way L BLUE II - 31 LWLFC Linear Way L BLUE II - 31 LWLFC Linear Way L BLUE II - 31 LWLFC··B Linear Way L BLUE II - 31 LWLFC··B Linear Way L BLUE II - 31 LWLFC··B Linear Way L BLUE II - 31 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1	LWHY	Linear Way H	BLUE	I -131				
LWLB Linear Way L BLUE II - 25 LWLN Linear Way L BLUE II - 25 LWLY Linear Way L BLUE II - 23 LWLCB Linear Way L BLUE II - 25 LWLCN Linear Way L BLUE II - 25 LWLFBCS Linear Way L BLUE II - 25 LWLFBCS Linear Way L BLUE II - 31 MHDMC C-Lube Linear Way MH BLUE II - 1 MHDMC C-Lube Linear Way MH BLUE II - 1 MHDMC C-Lube Linear Way MH BLUE II - 1	LWL	Linear Way L	BLUE	I - 23		,		
LWLB CS Linear Way L BLUE II - 27 LWLN Linear Way L BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 25 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MET C-Lube Linear Way ME BLUE II - 31 MH C-Lube Linear Way MB BLUE II - 31 MHMU C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHD C-Lube Linear Way MH BLUE II - 1 MHDM C-Lube Linear Way MH BLUE II - 1	LWL···B	Linear Way L	BLUE	I - 25		•		
LWLN Linear Way L Linear Way	LWL···B CS	Linear Way L	BLUE	Ⅱ- 27		_		
LWLC: Linear Way L BLUE II- 23 MET: SL C-Lube Linear Way ME BLUE II- WHCC: B Linear Way L BLUE II- 25 METC C-Lube Linear Way ME BLUE II- WHCC: SL METG C-Lube Linear Way ME BLUE II- WHCC: SL METG C-Lube Linear Way ME BLUE II- METG: SL METG C-Lube Linear Way ME BLUE II- METG: SL METG C-Lube Linear Way ME BLUE II- METG: SL METG C-Lube Linear Way ME BLUE II- METG: SL METG C-Lube Linear Way ME BLUE II- MH C-Lube Linear Way MH BLUE II- MH C-Lube Linear Way MH BLUE II- MH: MM C-Lube Linear Way MH BLUE II- MH MH: MH C-Lube Linear Way MH BLUE II- MH C-Lube Linear Way MH BLUE II- MH MHO C-Lube Linear Way MH BLUE II- MHD MHD C-Lube Linear Way MH BLUE II- MHD C-Lube Linear Way MH BLUE II- MHD MHD MHD MHD MHD MHD MHD MHD	LWL···N	Linear Way L	BLUE	Ⅱ- 25		-		
LWLC Linear Way L LWLC···B Linear Way L BLUE II- 23 METC C-Lube Linear Way ME BLUE II- LWLC···N Linear Way L BLUE II- 25 METG C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- METG···SL C-Lube Linear Way ME BLUE II- METG···SL C-Lube Linear Way ME BLUE II- MH C-Lube Linear Way MH BLUE II- MH···M C-Lube Linear Way MH BLUE II- MH···MU C-Lube Linear Way MH BLUE II- MHO C-Lube Linear Way MH BLUE II- MHO C-Lube Linear Way MH BLUE II- MHD C-Lube Linear Way MH BLUE II-1 MHD···M C-Lube Linear Way MH BLUE II-1	LWL···Y	Linear Way L	BLUE	Ⅱ- 23		•		
LWLC···B Linear Way L BLUE II- 25 METC···SL C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- METG C-Lube Linear Way ME BLUE II- METG···SL METG C-Lube Linear Way ME BLUE II- MH C-Lube Linear Way MH BLUE II-1 MH MH···M C-Lube Linear Way MH BLUE II-1 MH···M C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MHC LWLFC···B Linear Way L BLUE II-31 MHD MHD C-Lube Linear Way MH BLUE II-1	LWLC	Linear Way L	BLUE	I - 23		•		
LWLF Linear Way L BLUE II- 25 METG C-Lube Linear Way ME BLUE II- METG···SL C-Lube Linear Way ME BLUE II- METG···SL C-Lube Linear Way ME BLUE II- METG···SL C-Lube Linear Way ME BLUE II- MH C-Lube Linear Way MH BLUE II-1 MH···M C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MHC···MU C-Lube Linear Way MH BLUE II-1 MHD C-Lube Linear Way MH BLUE II-1	LWLC···B	Linear Way L	BLUE	Ⅱ- 25		-		
LWLF···B Linear Way L BLUE II- 31 METG···SL C-Lube Linear Way ME BLUE II- 31 MH C-Lube Linear Way MH BLUE II- 1 MH C-Lube Linear Way MH BLUE II- 1 MH···M C-Lube Linear Way MH BLUE II- 1 MH···MU C-Lube Linear Way MH BLUE II- 1 MH···MU C-Lube Linear Way MH BLUE II- 1 MH···MU C-Lube Linear Way MH BLUE II- 1 MHC···MU C-Lube Linear Way MH BLUE II- 1 MHD C-Lube Linear Way MH BLUE II- 1	LWLC···N	Linear Way L	BLUE	I - 25		_		
LWLF···B Linear Way L BLUE II- 31 MH C-Lube Linear Way MH BLUE II-1 MH···M C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MH···MU C-Lube Linear Way MH BLUE II-1 MHC Linear Way MH BLUE II-1 MHD C-Lube Linear Way MH BLUE II-1	LWLF	Linear Way L	BLUE	I - 31				
Linear Way L BLUE II- 35 MH···M C-Lube Linear Way MH BLUE II- 1 MH···MU C-Lube Linear Way MH BLUE II- 1 MH···MU C-Lube Linear Way MH BLUE II- 1 MHD WHD···M C-Lube Linear Way MH BLUE II- 1	_WLF···B	Linear Way L	BLUE	I - 31		_		
LWLFC Linear Way L BLUE II- 31 WHMU C-Lube Linear Way MH BLUE II-1 WHD C-Lube Linear Way MH BLUE II-1 WHD C-Lube Linear Way MH BLUE II-1 WHDM C-Lube Linear Way MH BLUE II-1 WHDM C-Lube Linear Way MH BLUE II-1	_WLF···BCS	Linear Way L	BLUE	II- 35		-		
LWLFC Linear Way L BLUE II- 31 WHD C-Lube Linear Way MH BLUE II-1 LWLFC···B Linear Way L BLUE II- 31 WHD···M C-Lube Linear Way MH BLUE II-1 LWLFC···N Linear Way L BLUE II- 31	LWLF···N	Linear Way L	BLUE	I - 31		-		Ⅱ-10
LWLFC···B Linear Way L BLUE II- 31 MHD···M C-Lube Linear Way MH BLUE II-1 LWLFC···N Linear Way L BLUE II- 31	LWLFC	Linear Way L	BLUE	I - 31		•		Ⅱ-10
LWLFC···N Linear Way L BLUE II- 31	LWLFC···B	Linear Way L	BLUE	I - 31		-		Ⅱ-12
	LWLFC···N	Linear Way L	BLUE	I - 31		_		II-12 II-12

Model code	Series name	Catalog name	Page	
MHD…SL	C-Lube Linear Way MH	BLUE	I -121	M
MHDC···SL	C-Lube Linear Way MH	BLUE	I -121	M
MHDG	C-Lube Linear Way MH	BLUE	I -123	M
MHDG···SL	C-Lube Linear Way MH	BLUE	I -121	M
MHG	C-Lube Linear Way MH	BLUE	I I-107	M
MHS	C-Lube Linear Way MH	BLUE	I I-127	M
MHS···M	C-Lube Linear Way MH	BLUE	I -129	M
MHS···MU	C-Lube Linear Way MH	BLUE	I I-129	M
MHSSL	C-Lube Linear Way MH	BLUE	I I-127	M
MHSG	C-Lube Linear Way MH	BLUE	I I-127	
MHT	C-Lube Linear Way MH	BLUE	I -113	
МНТ…М	C-Lube Linear Way MH	BLUE	I -115	
MHT···MU	C-Lube Linear Way MH	BLUE	I -115	0
MHT···SL	C-Lube Linear Way MH	BLUE	I -113	
MHTG	C-Lube Linear Way MH	BLUE	I -113	
ML	C-Lube Linear Way ML	BLUE	I - 23	
MLC	C-Lube Linear Way ML	BLUE	I - 23	R
MLF	C-Lube Linear Way ML	BLUE	I - 31	R
MLFC	C-Lube Linear Way ML	BLUE	I - 31	
MLFG	C-Lube Linear Way ML	BLUE	I - 33	
MLG	C-Lube Linear Way ML	BLUE	I - 25	
MLL	C-Lube Linear Way ML	BLUE	I - 27	SI
MLV	C-Lube Linear Way MLV	BLUE	I - 47	SI
MUL	C-Lube Linear Way MUL	BLUE	I -167	S
MV	C-Lube Linear Way MV	BLUE	I - 59	S
MX	C-Lube Linear Roller Way Super MX	BLUE	I -191	S
MXC	C-Lube Linear Roller Way Super MX	BLUE	I -191	S
MXD	C-Lube Linear Roller Way Super MX	BLUE	I I-199	S
MXDSL	C-Lube Linear Roller Way Super MX	BLUE	I I-199	S
MXDC	C-Lube Linear Roller Way Super MX	BLUE	I -199	
MXDG	C-Lube Linear Roller Way Super MX	BLUE	I -199	
MXDL	C-Lube Linear Roller Way Super MX	BLUE	I I-201	
MXG	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXH	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXHC	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXHG	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXHL	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXL	C-Lube Linear Roller Way Super MX	BLUE	I -191	
MXN	C-Lube Linear Roller Way Super MX	BLUE	I I-213	
Note: BLUE denotes CAT-	1604E, while RED denotes CAT-1605E.			

C-Lube Linear Roller Way Super MX	BLUE BLUE BLUE BLUE BLUE	Ⅱ-215 Ⅱ-215
C-Lube Linear Roller Way Super MX	BLUE BLUE BLUE BLUE BLUE	Ⅱ-215 Ⅱ-215 Ⅱ-215
C-Lube Linear Roller Way Super MX	BLUE BLUE BLUE BLUE	Ⅱ-215
C-Lube Linear Roller Way Super MX	BLUE BLUE BLUE	Ⅱ-215 Ⅱ-215 Ⅱ-215
C-Lube Linear Roller Way Super MX C-Lube Linear Roller Way Super MX C-Lube Linear Roller Way Super MX	BLUE	
C-Lube Linear Roller Way Super MX C-Lube Linear Roller Way Super MX	BLUE	I -215
C-Lube Linear Roller Way Super MX		
•	DLUE	II-209
C-Lube Linear Roller Way Super MX	BLUE	II-209
	BLUE	II-209
C-Lube Linear Roller Way Super MX	BLUE	II-209
0		
Miniatura Stroka		
Rotary Bushing	RED	Ⅱ-187
R		
Roller Way	RED	I I-201
Roller Way	RED	Ⅱ-202
S		
Miniature Stroke	RED	I -187
Roller Way	RED	I -203
Stroke Rotary Bushing	RED	I -179
Stroke Rotary Bushing	RED	I -179
Stroke Rotary Bushing	RED	I -181
Stroke Rotary Bushing	RED	I -181
Miniature Stroke	RED	I -187
Miniature Stroke Rotary Bushing	RED	I -187
	Miniature Stroke Rotary Bushing R Roller Way Roller Way S Miniature Stroke Rotary Bushing Roller Way Stroke Rotary Bushing Miniature Stroke Rotary Bushing Miniature Stroke Rotary Bushing Miniature Stroke	Miniature Stroke Rotary Bushing R Roller Way RED Roller Way RED S Miniature Stroke Rotary Bushing Roller Way RED Stroke Rotary Bushing RED Miniature Stroke Rotary Bushing Miniature Stroke Rotary Bushing Miniature Stroke Rotary Bushing Miniature Stroke RED RED

Linear Motion Rolling Guide Series,

Configuration of General Catalog

Linear Motion Rolling Guide Series General Catalog Consists of

[Models]

Rail Guide Type **Endless Linear Motion Type**

RED the two volumes. (CAT-1605E)

(Models)

- Rail Guide Type **Limited Linear Motion Type**
- Shaft Guide Type **Endless Linear Motion Type** Limited Linear Motion Type + Rolling Motion Type
- Flat Guide Type **Endless Linear Motion Type Limited Linear Motion Type**

C-Lube Linear Way ML C-Lube Linear Way MV C-Lube Linear Way MV C-Lube Linear Way ME C-Lube Linear Way MH Linear Way L Linear Way H Linear Way E ML · LWL ME · LWE MH · LWH **MLV** MV

Linear Roller Way Super MX

MX · LRX

C-Lube Linear Way MUL Linear Way U **MUL·LWU**

LRWX

Linear Roller Way Super X Linear Roller Way X Linear Way Module LWLM · LRWM

Shaft Guide Type

Stroke Rotary Bushing

Flat Guide Type Roller Way & Flat Roller Cage RW · SR · GSN

V - 28

IK Introduction of Technical Service Site

"IKO Technical Service Site" can be accessed from our home page. The site provides various tools for selecting Linear Ways and Linear Roller Ways. Please utilize these tools for assistance when selecting products. Additionally the site also provides CAD data and product catalogs for the Needle Series, Linear Motion Rolling Guide Series, and Mechatronics Series for download. Please utilize them to improve your design efficiency.

https://www.ikont.co.jp/eg/

1. Technical calculations

For Linear Way/Linear Roller Way load and life calculation, you can obtain the calculated load and the rating life by entering the operating conditions. Also you can derive the motor torque required for operation and the effective thrust force during operation in the sections of motor torque calculation and calculation of effective thrust force of linear motor tables respectively, and output the calculation results in PDF format, as well as save the histories.

2. Selection of Identification Number

By selecting such specification as model code, dimensions, part code, material code, preload symbol, classification symbol, interchangeable code and supplemental code of Linear ways/Linear roller ways, you can easily specify the identification number used for ordering.

Also you can browse the CAD data of the selected products, calculate the load, and output the selection results in PDF format, as well as save the histories.

Executions | Constitution | Constit

3. Downloading CAD data

2-dimensional CAD data (DXF file)

There are two types of figures, brief figure and detailed figure. The brief figure shows only the external view lines, and the detailed figure shows the detailed lines. The drawing consists of three drawings: front view, side view and plain view. The scale shows only the original size (1:1), and it does not show dimension lines.

3-dimensional CAD data

It is linked to the mechanical parts CAD library "PART community". Entering the rail dimension and option contents to the detail, you can view the 2D/3D CAD data suitable for the specification for free of charge.

4. Downloading Catalog and Operation Manual

You can download product catalogs of needle series, linear motion rolling guide series and mechatronics series, operation manuals of precision positioning tables and various electrical components in PDF format, as well as support software for precision positioning tables. If you would like a copy of our catalog, please visit the IKO official website and apply for the catalog, or contact our regional office or sales office nearby.

V-30

IK Gentle to The Earth

Nippon Thompson Co., Ltd. is working to develop global environment-friendly products. It is committed to developing products that make its customers' machinery and equipment more reliable, thereby contributing to preserving the global environment. This development stance manifests well in the keyword "Oil Minimum." Our pursuit of Oil Minimum has led to the creation of IKO's proprietary family of lubricating parts as "C-Lube."

KO Linear Motion Rolling Guides are manufactured through a control system

• The standard products listed in this catalog comply with the specifications of

that alleviates their impact on the global environment to meet the quality requirements of ISO 14001 in compliance with the quality requirements level

the ten hazardous materials cited in the European RoHS Directive.

of ISO 9001 for quality improvement.

NIPPON THOMPSON CO., LTD. (JAPAN)

Head Office: 19-19. Takanawa 2-chome. Minato-ku. Tokyo, 108-8586, Japan

+81 (0)3-3448-5850 +81 (0)3-3447-7637 Fax : ntt@ikonet.co.jp

https://www.ikont.co.jp/eg/

: Gifu. Kamakura

IKO INTERNATIONAL, INC. (U.S.A.)

East Coast Operation (Sales Head Office)

91 Walsh Drive Parsippany, NJ, 07054,

USÁ : +1-973-402-0254 Phone : +1-800-922-0337 · +1-973-402-0441 E-mail : eco@ikonet.co.ip

Midwest Operation

101 Mark Street, Unit-G, Wood Dale, IL, 60191,

USA Phone : +1-630-766-6464 Toll Free : +1-800-323-6694 +1-630-766-6869 F-mail : mwo@ikonet.co.ip

West Coast Operation 9830 Norwalk Boulevard, Suite 198,

Santa Fe Springs, CA, 90670, IIS A Phone

: +1-800-252-3665 · +1-562-941-4027 E-mail : wco@ikonet.co.jp

Silicon Valley Sales Office 1500 Wyatt Drive, Suite 10, Santa Clara, CA, 95054,

Phone · +1-408-492-0240 Toll Free : +1-800-252-3665 E-mail : wco@ikonet.co.jp

Southeast Operation 3235 Satellite Boulevard Building 400, Suite 230,

Duluth GA 30096

: +1-770-418-1904 +1-800-874-6445 Toll Free : +1-770-418-9403 : seo@ikonet.co.jp E-mail

Southwest Operation 6191 N STATE HIGHWAY 161, STE 440.

IRVING. TX 75038-2264.

Phone +1-972-925-0444 Toll Free : +1-800-295-7886

IKO THOMPSON BEARINGS CANADA, INC.(CANADA)

: swo@ikonet.co.ip

Suite 700 - 6733 Mississauga Road, Mississauga, Ontario, L5N 6J5, Canada

: +1-647-931-3933 : itc@ikonet.co.ip

IKO BRASIL SERVICOS EMPRESARIAIS LTDA. (BRAZIL)

Rua Frei Caneca 1407.

Condominio Edificio Barão de Monte Cedro. Cjs. 801/802, Consolação, São Paulo-SP Cep: 01307-909

: +55 (0)11-2366-3033 : itb@ikonet.co.ip

NIPPON THOMPSON EUROPE B.V. (EUROPE)

The Netherlands (Sales Head Office)

Keersopstraat 35. 3044 EX, Rotterdam, The Netherlands

: +31 (0)10-462 68 68 Phone

Germany Branch

Mündelheimer Weg 54 40472 Düsseldorf

Germany Phone +49 (0)211-41 40 61 +49 (0)211-42 76 93

: ntd@ikonet.co.jp E-mail Regensburg Sales Office Im Gewerbepark D 04,

93059 Regensburg, Germany

: +49 (0)941-20 60 70 : +49 (0)941-20 60 719 Fax E-mail

U.K. Branch

2 Vincent Avenue, Crownhill Milton Keynes, Bucks, MK8 0AB, United Kingdom

Phone : +44 (0)1908-566144 E-mail : sales@iko.co.uk

Spain Branch Autovia Madrid-Barcelona, Km. 43,700

Polig. Ind. AIDA - Nove A-8, Ofic. 2-1^a 19200-Azuqueca de Henares, (Guadalajara) Spain Phone: +34 949-26 33 90

: +34 949-26 31 13 : nts@ikonet.co.jp F-mail

France Branch

Bâtiment le Raphaël-Paris, Nord 2, 22 avenue des Nations BP54394 Villepinte

> 95943 ROISSY C.D.G Cedex France

+33 (0)1-48 16 57 39 +33 (0)1-48 16 57 46 : ntf@ikont.eu E-mail

IKO THOMPSON ASIA CO., LTD. (THAILAND)

Unit 305,3rd Fl., Zuellig house, 1-7 Silom Rd., Silom Bangrak, Bangkok 10500. Thailand : +66 (0)2637-5115 Phone Fax

+66 (0)2637-5116 F-mail : ita@ikonet.co.ip

IKO THOMPSON KOREA CO.,LTD. (KOREA)

201. Worldvision Bldg., 77-1, Yeouinaru-ro. Yeongdeungpo-gu, Seoul, Korea

+82 (0)2-6337-5851 : +82 (0)2-6337-5852 : itk@ikonet.co.ip

IKO-THOMPSON (SHANGHAI) LTD. (CHINA)

Shanghai (Sales Head Office)

2301-02, 2310, MetroPlaza No.555, LouShanGuan Road, ChangNing District, Shanghai, People's Republic of China, 200051

: +86 (0)21-3250-5525 +86 (0)21-3250-5526 E-mail : ntc@ikonet.co.ip

Beijing Branch

Room 1909, Tower C Oriental Media Center. Guanghua Road No. 4 Chaoyang District, Beijing People's Republic of China, 100026

Phone +86 (0)10-6515-7689 E-mail : ntc@ikonet.co.jp

Guangzhou Branch

Room 834, Garden Tower, Garden Hotel 368 Huanshi East Road, Yuexiu District, Guangzhou, Guangdong

People's Republic of China, 510064 : +86 (0)20-8384-0797 +86 (0)20-8381-2863 E-mail : ntc@ikonet.co.jp

Wuhan Branch

Room 2300, Truroll Plaza No.72, Wusheng Road, Qiao kou District, Wuhan, Hubei, People's Republic of China, 430033 Phone : +86 (0)27-8556-1610 +86 (0)27-8556-1630

E-mail : ntc@ikonet.co.jp

Shenzhen Branch

Room1808, KEENSTAR Building 18, Chuangye 2nd Rd 248, Bao'an, Shenzhen, Guangdong, People's Republic of China, 518081

: +86 (0)755-2265-0553 Phone +86 (0)755-2298-0665

F-mail : ntc@ikonet.co.jp Xian Branch

Room 2010, Block B. Chaoyang International Plaza.

Changle West Road, Xincheng District Xi'an, Shanxi, People's Republic of China, 710032 : +86 (0)29-8323-5915

E-mail : ntc@ikonet.co.jp Qinadao Branch

Room 608, Building 47, Huarun City No. 101 Shenzhen Road, Laoshan District, Qingdao City, Shandong

People's Republic of China, 266100 : +86 (0)532-8670-2246 Phone +86 (0)532-8670-2242

E-mail Shenvang Branch

2-1203 Tower I. City Plaza Shenyang NO.206, Nanjing North Street, Heping District People's Republic of China, 110001

: ntc@ikonet.co.jp

: +86 (0)24-2334-2662 +86 (0)24-2334-2442 : ntc@ikonet.co.ip

ntc@ikonet.co.ip

V - 32