Linear Ball Spline C-Lube Linear Ball Spline MAG Linear Ball Spline G Block Type Linear Ball Spline Stroke Ball Spline II - 101 # **Excellent features of compact linear structure by four-points contact in** IKO Linear Ball Spline is a linear motion rolling guide in which an external cylinder or slide unit makes linear motion along the spline shaft. Since the structure lets a ball to rotate on the spline track groove, it can receive not only the radial load but also rotating torque. Therefore it best fits the structure in which torque transmission and linear motion take place in parallel. ### **High rigidity despite of compact size** The structure places large diameter balls in two rows and has four-point contact with the track, allowing greater rigidity and compact design. For the load from all directions it gives a good balance and high rigidity! ### **Allows high accuracy and accurate positioning** Preload removes the clearance along the rotation direction, allowing accurate positioning along the rotation direction. No play along the rotation direction! ### **Low frictional resistance and smooth motion** The optimum design based on the thorough analysis of ball recirculating route realized low frictional resistance and smooth linear motion durable for high speed operations. # ball spline realized by a simple two-row raceways ### Both high speed durability performance and maintenance free performance are achieved C-lube Linear Ball Spline MAG realizes a long term maintenance free using the built-in lubrication parts C-Lube for ball recirculation way in external cylinder. Since the lubrication oil inside C-Lube maintains the lubrication performance for a long time, it reduces the annoying lubricating management works and also allows total system cost saving by reducing the oil supply structures. 18.2 Hz ### Durability test assuming the chip mounter #### Number of cycle Stroke length Endured total strokes of 200 million times without a problem, only by lubrication oil inside C-Lube, for vertical shaft and super high tact operation! Realized the maintenance free of 10 years of use equivalent to 10 years, in the test condition assuming the use for general chip mounters!! Achieved maintenance free of more than 600 million total strokes in this severe operation conditions!! ### **Wide variation** A wide variety of models and sizes, such as super miniature size of 2 mm spline shaft diameter, block types and limited stroke types, is provided for your selection to meet each requirement. | Series | Model | Size | Spline shat
Min | ft diameter
Max | | |-------------------------------|-------|----------|--------------------|--------------------|-------| | C-Lube Linear Ball Spline MAG | MAG | 6 models | 6 sizes | 4 ~ | 12 mm | | Linear Ball Spline G | LSAG | 8 models | 12 sizes | 2 ~ | 30 mm | | Block Type Linear Ball Spline | LSB | 3 models | 7 sizes | 6 ~ | 25 mm | | Stroke Ball Spline | LS | 2 models | 3 sizes | 4 ~ | 6 mm | II - 103 ### Free combination is enabled for model/accuracy/preload!! ### **Extreme interchangeable system** ### **Interchangeable specification** Interchangeable specification has realized the unparalleled high interchangeability in the background of unique high processing technology, by severely managing the dimensions of external cylinder, slide unit and spline shaft. This feature allows independent handling of external cylinder or slide unit and spline shaft, thus allowing you to select the free combination and to order any products, for any volume and at any necessary time. #### Requirements of; - Wish to improve the rigidity and life of machines - Wish to improve the accuracy of machines - Wish to replace the external cylinders or slide units immediately - The number of external cylinders or slide units is in short - Wish to replace the spline shaft immediately - The length of spline shaft is not sufficient - Wish to store only the external cylinders or slide units in stock for emergency #### Interchangeable specification realizes: - Wish to prepare for a sudden design change - Wish to select freely the combination of high accuracy and preload - Independent handling of external cylinders or slide units and spline shafts - Free and independent combination of external cylinders or slide units and spline shafts - Compactness independent storing of external cylinders or slide units and spline shafts ### Select the products as many as you wish. ### External cylinder interchangeability / unit interchangeability A wide variety of models with different sectional shape and length are provided, for free replacement on the same spline shaft. ### **Accuracy interchangeability** The simple structure of four-contact in two-row raceway yields small manufacturing errors or accuracy measurement errors, allowing the maintenance of each raceway in the high dimensions accuracy. Two accuracy classes of ordinary and high level are provided, to support even high traveling accuracy pur- ### **Preload interchangeability** The high accuracy dimensions management utilizing the simple structure achieved the interchangeability of preloaded external cylinders and slide units. It supports the applications requiring the rigidity of one higher rank. Spline shaft Slide unit Spline shaft ### Maintenance free is achieved only by replacing the external cylinder! II - 105II - 106 ### **C-Lube Linear Ball Spline MAG** ## **Points** #### Compact size Uses a unique ball retaining mechanism without using a retainer, allowing a small external cylinder outside diameter against shaft diameter. The minimum size LSAG2 realizes an unparalleled small size of 2 mm shaft diameter and 6 mm external cylinder's outside diameter. #### Wide range of variations for your needs The external cylinder shape can be selected from two types, the standard (cylindrical shape) type and the flange type, and there are two types with different length of external cylinder with same section. Also for spline shaft, the solid shaft and the hollow shaft that allows piping/wiring/air removal are prepared for your selection to meet the requirements of mechanical/unit specifications. ### Extremely small size realized by simple structure Stainless steel shaft with high corrosion resistance The spline shafts made of stainless steel are highly corrosion-resistant. They are suitable where rust prevention oil is not preferred, such as in a cleanroom environment. ### **Identification Number and Specification** ### Example of an identification number The specifications of MAG and LSAG series are indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a preload symbol, a classification symbol, an interchangeable code, and any supplemental codes for each specification to apply. Note (1) Indicate "LSAG" (solid shaft) or "LSAGT" (hollow shaft) for the model code of the single spline shaft regardless of the series and the combination of external cylinder models. 1N=0.102kgf=0.2248lbs ### Identification Number and Specification —Model · External Cylinder Length · | Model | C-Lube Linear Ball S
(MAG series) | Spline MAG | Standard type
Flange type | : MAG
: MAGF | | | | |------------------------------|---------------------------------------|-------------------|--|---|--|--|--| | | Linear Ball Spline G
(LSAG series) | (1) | Standard type
Flange type | : LSAG
: LSAGF | | | | | | • | lid shaft) or "LS | ee Table 1.
SAGT" (hollow shaft) for the mo
he combination of external cylir | 0 1 | | | | | | Note (1) This model I | | | | | | | | 2 External cylinder length | Standard : No symb | | nbol For applicable models and sizes, see Table 1. | | | | | | | | | | | | | | | Spline shaft shape | Solid shaft
Hollow shaft | : No symb
: T | ool For applicable models and | sizes, see Table 1. | | | | | 4. Size | 2, 3, 4, 5, 6, 8, 10, 1, 20, 25, 30 | 2, 15 | For applicable models and | sizes, see Table 1. | | | | | Number of external cylinders | | : C O | For an assembled set, indiction cylinders assembled on a sexternal cylinder, only "C1" | | | | | | 6 Spline shaft length | | : R O | The spline shaft length is in For standard and maximun table. | ndicated in mm.
n lengths, see the dimension | | | | ### Spline Shaft Shape \cdot Size \cdot Number of External Cylinders \cdot Spline Shaft Length - Table 1 Models and sizes of MAG and LSAG series | | External cylinder | | | | | | | | Si | ze | | | | | | |-------------------------------|-------------------|---|---------|---|---|---|---|---|----|----|----|----|----|----|----| | Shape | length | | Model | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | | | Standard | M | AG | - | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | | Standard type
Solid shaft | | | LSAG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Long | M | AGL | _ | _ | 0 | 0 | 0 | 0 | _ | _ | _ | _ | _ | _ | | 1 | | | LSAGL | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | M | AGT | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | | Standard type
Hollow shaft | | | LSAGT | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | | 1 | | M | AGLT | _ | _ | 0 | 0 | 0 | 0 | _ | _ | _ | _ | _ | _ | | ' | | | LSAGLT | _ | _ | - | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | | Flange type
Solid shaft | Standard | M | AGF | _ | - | ı | 0 | 0 | 0 | 0 | 0 | ı | ı | ı | _ | | 8 | | | LSAGF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Long | | LSAGFL | _ | - | ı | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Flange type
Hollow shaft | Standard | | AGFT | _ | - | - | 0 | 0 | 0 | 0 | 0 | ı | ı | ı | _ | | 8 | | | LSAGFT | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | | | | Long | | LSAGFLT | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | | Remark: For the models indicated in _____, the interchangeable specification is available.
Ⅱ -110 Clearance Standard Light preload : T₀ Specify this item for an assembled set or a single : No symbol external cylinder. For details of the preload amount, see Table 2. : T₁ For applicable preload types, see Table 3. Table 2 Preload amount | Preload type | Preload
symbol | Preload
amount
N | Operational conditions | |---------------|-------------------|------------------------|---| | Clearance | To | 0(1) | · Very light motion | | Standard | (No symbol) | 0(2) | · Light and precise motion | | Light preload | T ₁ | 0.02 C ₀ | Almost no vibrationsLoad is evenly balancedLight and precise motion | Notes (1) There is zero or subtle clearance. (2) Indicates zero or minimal amount of preload. Remark: C_0 indicates the basic static load rating. Table 3 Application of preload | | Preload | d type (preload sy | /mbol) | |------|--------------------------------|-------------------------|------------------------------------| | Size | Clearance
(T ₀) | Standard
(No symbol) | Light preload
(T ₁) | | 2 | 0 | 0 | _ | | 3 | 0 | 0 | _ | | 4 | 0 | 0 | _ | | 5 | - | 0 | 0 | | 6 | _ | 0 | 0 | | 8 | - | 0 | 0 | | 10 | - | 0 | 0 | | 12 | _ | 0 | 0 | | 15 | _ | 0 | 0 | | 20 | _ | 0 | 0 | | 25 | _ | 0 | 0 | | 30 | _ | 0 | 0 | Remark: The mark indicates that interchangeable specifications products are available. ### -Accuracy Class- 8 Accuracy class Ordinary High Precision : H : P : No symbol For interchangeable specification products, assemble an external cylinder and a spline shaft of the same accuracy class. For applicable accuracy class, see Table 4. For details of accuracy class, see Table 5, Table 6, and Table 4 Application of accuracy class | | Class | classification sy | ymbol) | |------|-------------------------|-------------------|---------------| | Size | Ordinary
(No symbol) | High
(H) | Precision (P) | | 2 | 0 | 0 | 0 | | 3 | 0 | 0 | 0 | | 4 | 0 | 0 | 0 | | 5 | 0 | 0 | 0 | | 6 | 0 | 0 | 0 | | 8 | 0 | 0 | 0 | | 10 | 0 | 0 | 0 | | 12 | 0 | 0 | 0 | | 15 | 0 | 0 | 0 | | 20 | 0 | 0 | 0 | | 25 | 0 | 0 | 0 | | 30 | 0 | 0 | 0 | Remark: The mark indicates that interchangeable specifications products are available. #### Table 5 Tolerance of each part unit: μ m | | Re | elative to axi | al line of sup | ③ Perpendicularity of mounting | | | | | | | |------|-------------|----------------|----------------|--------------------------------|---------------------------------|-----------|---|------|-----------|--| | Size | | l runout of p | | | endicularity of
end face (1) | of spline | surface of flange with respect
to axial line of spline shaft (2) | | | | | | Ordinary | High | Precision | Ordinary | High | Precision | Ordinary | High | Precision | | | | (No symbol) | (H) | (P) | (No symbol) | (H) | (P) | (No symbol) | (H) | (P) | | | 2 | 33 | 14 | 8 | 22 | 9 | 6 | 27 | 11 | 8 | | | 3 | 33 | 14 | 8 | 22 | 9 | 6 | 27 | 11 | 8 | | | 4 | 33 | 14 | 8 | 22 | 9 | 6 | 27 | 11 | 8 | | | 5 | 33 | 33 14 | | 22 | 9 | 6 | 27 | 11 | 8 | | | 6 | 33 | 14 | 8 | 22 | 9 | 6 | 27 | 11 | 8 | | | 8 | 33 | 14 | 8 | 22 | 9 | 6 | 27 | 11 | 8 | | | 10 | 41 | 17 | 10 | 22 | 9 | 6 | 33 | 13 | 9 | | | 12 | 41 | 17 | 10 | 22 | 9 | 6 | 33 | 13 | 9 | | | 15 | 46 | 19 | 12 | 27 | 11 | 8 | 33 | 13 | 9 | | | 20 | 46 | 19 | 12 | 27 | 11 | 8 | 33 | 13 | 9 | | | 25 | 53 | 22 | 13 | 33 | 13 | 9 | 39 | 16 | 11 | | | 30 | 53 | 22 | 13 | 33 | 13 | 9 | 39 | 16 | 11 | | Notes (1) The values are for the processed shaft ends. (2) Applicable to the flange type. ### Table 6 Twist of grooves with respect to effective length of the spline part unit: //m | | | | arrice parri | |-----------------|-------------------------|-------------|---------------| | Accuracy class | Ordinary
(No symbol) | High
(H) | Precision (P) | | Allowable value | 33 | 13 | 6 | Remark: The values can be applied to 100 mm of the effective length of the spline at any position. Table 7 Allowable values of total radial runout of spline shaft axial line unit: μ m | | Size and | | Size | | | | | | | | | | | |-----------------------------------|----------|-------------|------------------|-----------|-------------|--------|-----------|-------------|------|-----------|--|--|--| | | accuracy | 2 | 2, 3, 4, 5, 6, 8 | | | 10, 12 | | 15, 20 | | | | | | | Overall length of spline shaft mm | | Ordinary | High | Precision | Ordinary | High | Precision | Ordinary | High | Precision | | | | | | | (No symbol) | (H) | (P) | (No symbol) | (H) | (P) | (No symbol) | (H) | (P) | | | | | _ | 200 | 72 | 46 | 26 | 59 | 36 | 20 | 56 | 34 | 18 | | | | | 200 | 315 | 133 | 89 | 57 | 83 | 54 | 32 | 71 | 45 | 25 | | | | | 315 | 400 | 185 | 126 | 82 | 103 | 68 | 41 | 83 | 53 | 31 | | | | | 400 | 500 | 236 | 163 | 108 | 123 | 82 | 51 | 95 | 62 | 38 | | | | | 500 | 630 | _ | - | _ | 151 | 102 | 65 | 112 | 75 | 46 | | | | | 630 | 800 | _ | _ | _ | 190 | 130 | 85 | 137 | 92 | 58 | | | | | 800 | 1 000 | _ | _ | _ | _ | _ | _ | 170 | 115 | 75 | | | | | 1 000 | 1 250 | _ | _ | _ | _ | _ | _ | _ | _ | _ | Size and | Size | | | | | | | | |---------------|----------------|-------------|------|-----------|--|--|--|--|--| | | accuracy class | 25, 30 | | | | | | | | | Overall lengt | h | Ordinary | High | Precision | | | | | | | of spline sha | ft mm | (No symbol) | (H) | (P) | | | | | | | _ | 200 | 53 | 32 | 18 | | | | | | | 200 | 315 | 58 | 39 | 21 | | | | | | | 315 | 400 | 70 | 44 | 25 | | | | | | | 400 | 500 | 78 | 50 | 29 | | | | | | | 500 | 630 | 88 | 57 | 34 | | | | | | | 630 | 800 | 103 | 68 | 42 | | | | | | | 800 | 1 000 | 124 | 83 | 52 | | | | | | | 1 000 | 1 250 | 151 | 102 | 65 | | | | | | ### -Accuracy Class- Table 8 Measuring methods of accuracy | Table 8 Measurin | g methods of accuracy | | |---|---|---| | Item | Measuring method | Illustration of measuring method | | (1) Radial runout of periphery of parts mounting part with respect to axial line of supporting part of spline shaft (see Table 5 ①) | While supporting the spline shaft at its support part, place the dial gage probes on the outer peripheral faces of the parts mounting part and measure the deflection from one rotation of the spline shaft. | | | Perpendicularity of spline part end face with respect to axial line of supporting part of spline shaft (See Table 5 ②) | While supporting the spline shaft at its support part and one spline shaft end, place the dial gage probes on the spline end faces and obtain perpendicularity by measuring the deflection from one rotation of the spline shaft. | | | Perpendicularity of
mounting surface
of flange with
respect to axial line
of spline shaft
(see Table 5 ③) | While supporting the spline shaft at both centers and the outer peripheral faces of the spline shaft near the external cylinder and fixing the external cylinder on the spline shaft, place the dial gage probe on the flange mounting surface and obtain perpendicularity by measuring the deflection from one rotation of the spline shaft. | Jig fixture | | Twist of grooves
with respect to
effective length of
the spline part
(see Table 6) | While supporting the spline shaft fixed, apply a unidirectional torsion moment load to the external cylinder (or measuring unit), place the dial gage probe vertically to the spline shaft on the side face of the sunk key attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of the spline shaft. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder. | Sunk key 100 Reference block for dial gage probe movement | | Total radial runout
of axial line of
spline shaft
(see Table 7) | While supporting the spline shaft at its support part or at both centers, place a dial gage probe on the outer peripheral face of the external cylinder (or measuring unit) and measure the deflection from one rotation of the spline shaft at several positions in the axial direction to obtain the maximum value. | | Note (1) The accuracy are for the processed shaft ends. Table 9.1 Application of special specifications (Interchangeable specification, single external cylinder, and assembled set) | Cassial appointment | Supplemental | | | | | | Si | ze | | | | | | |-----------------------|--------------|---|---|---|---|---|----|----|----|----|----|----|----| | Special specification | code | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | | No seal | /N | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Oil hole (1) | /OH | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | With C-Lube plate (1) | /Q | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | Note (1) Applicable to LSAG series. Table 9.2 Application of special specifications (Non-interchangeable specification) | Special specification | Supplemental | | | | | | Si | ze | | | | | | |---------------------------------|--------------|---|---|---|---|---|----|----|----|----|----|----
----| | Special specification | code | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | | Stainless steel end plate (1) | /BS | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | | No seal | /N | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Oil hole (1) | /OH | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | With C-Lube plate (1) | /Q | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | _ | | Special environment seal (1) | /RE | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | | Stainless steel spline shaft(2) | /S | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Specified grease (1) | /Y | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | Notes (1) Applicable to LSAG series. (2) Applicable to solid shaft. #### Table 10 Combination of supplemental codes | N | • | | | | | | |----|----|---|----|---|----|---| | ОН | • | 0 | | | | | | Q | • | 0 | 0 | | | | | RE | • | - | • | • | | | | S | • | • | • | • | • | | | Υ | • | • | • | _ | • | | | | BS | N | ОН | Q | RE | S | Remarks 1. The combination of "-" shown in the table is not available. 2. Contact IKO for the combination of the interchangeable specification marked with . 3. When using multiple types for combination, please indicate by arranging the symbols in alphabetical order. ### -Special Specification - # Stainless steel end plate /BS The standard synthetic resin end plates are replaced with stainless steel end plates. The total length of the external cylinder remains unchanged. An oil hole is created on the external cylinder. For dimensions, see Table 11.1 and Table 11.2. Table 11.1 Location and diameter of oil hole on a standard type external cylinder (Supplemental code /OH) | | | | | un | it: mm | | |-----------------------|------|-----|-----------------------|------|--------|--| | Identification number | F | Н | Identification number | F | Н | | | LSAG 3 | 5 | 1.2 | _ | _ | _ | | | LSAG 4 | 6 | | _ | _ | _ | | | LSAG 5 | 9 | 1.5 | LSAGL 5 | 13 | | | | LSAG 6 | 10.5 | 1.5 | LSAGL 6 | 15 | 1.5 | | | LSAG 8 | 12.5 | | LSAGL 8 | 18.5 | | | | LSAG10 | 15 | | LSAGL10 | 23.5 | | | | LSAG12 | 17.5 | 2 | LSAGL12 | 27 | 2 | | | LSAG15 | 20 | | LSAGL15 | 32.5 | | | | LSAG20 | 25 | | LSAGL20 | 35.5 | | | | LSAG25 | 30 | 3 | LSAGL25 | 42 | 3 | | | LSAG30 | 35 | | LSAGL30 | 49 | | | Remark: A typical identification number is indicated, but is applied to all LSAG series standard type models of the same size. Table 11.2 Location and diameter of oil hole on a flange type external cylinder (Supplemental code /OH) | | | | | un | it: mm | |-----------------------|-----|-----|-----------------------|------|--------| | Identification number | F | Н | Identification number | F | Н | | LSAGF 3 | 2.1 | 1.2 | _ | _ | _ | | LSAGF 4 | 2.8 | | _ | _ | _ | | LSAGF 5 | 2.0 | 1.5 | LSAGFL 5 | 5.8 | | | LSAGF 6 | 3.5 | 1.5 | LSAGFL 6 | 8 | 1.5 | | LSAGF 8 | 3.5 | | LSAGFL 8 | 9.5 | | | LSAGF10 | 5 | | LSAGFL10 | 13.3 | | | LSAGF12 | 7.5 | 2 | LSAGFL12 | 17 | 2 | | LSAGF15 | 9 | | LSAGFL15 | 21.5 | | | LSAGF20 | 11 | | LSAGFL20 | 21.5 | | | LSAGF25 | 13 | 3 | LSAGFL25 | 25 | 3 | | LSAGF30 | 14 | | LSAGFL30 | 28 | | Remark: A typical identification number is indicated, but is applied to all LSAG series flange type models of the same size. #### With C-Lube plate /Q The C-Lube impregnated with lubrication oil is attached inside the seal of the external cylinder, so that the interval for reapplicating lubricant can be extended. For the total length of the external cylinder with C-Lube plate, see Table 12. Table 12 Dimension of external cylinder with C-Lube plate (Supplemental code /Q) | | | | unit: mm | |-----------------------|----------------------------|-----------------------|----------------------------| | Identification number | $L_{\scriptscriptstyle 1}$ | Identification number | $L_{\scriptscriptstyle 1}$ | | LSAG 5 | 24 | LSAGL 5 | 32 | | LSAG 6 | 27 | LSAGL 6 | 36 | | LSAG 8 | 33 | LSAGL 8 | 45 | | LSAG10 | 38 | LSAGL10 | 55 | | LSAG12 | 43 | LSAGL12 | 62 | Remarks 1. The dimensions of the external cylinder with C-Lube at both ends are indicated. 2. A typical identification number is indicated, but is applied to all LSAG series models of the same size. ### Special environment seal /RE The standard seals are replaced with seals for special environment that can be used at high temperatures. The total length of the external cylinder remains unchanged. ### Stainless steel spline shaft /S The material of the solid spline shaft is changed to stainless steel. The load rating will change to a value obtained by multiplying the load rating for the steel spline shaft by a factor of 0.8. #### Specified grease /YCG /YCL /YAF /YBR /YNG The type of pre-packed grease can be changed by the supplemental code. ① /YCG Low Dust-Generation Grease for Clean Environment CG2 is pre-packed. ② /YCL Low Dust-Generation Grease for Clean Environment CGL is pre-packed. ③ /YAF Anti-Fretting Corrosion Grease AF2 is pre-packed. 4 /YBR MOLYCOTE BR2 Plus Grease [Dow Corning] is pre-packed. 5 /YNG No grease is pre-packed. ### **Spline shaft strength** IKO Linear Ball Spline spline shafts can receive loads in all directions. Therefore, attention must be paid to spline shaft strength. #### For bending load For bending load on the spline shaft, select a shaft diameter that fulfills the conditions in formula (1). M: Maximum bending moment acting on spline shaft N·mm σ : Spline shaft allowable bending stress 98 N/mm² Z: Section modulus of spline shaft mm³ (See Table 13) #### For torsion load For torsion load on the spline shaft, select a shaft diameter that fulfills the conditions in formula (2). $T=Ta\times Zp$(2) T : Maximum torsion moment N⋅mm τa : Spline shaft allowable torsion stress 49 N/mm² Zp: Polar section modulus of spline shaft mm3 (See Table 13) #### For simultaneous torsion and bending load For simultaneous torsion and bending load on the spline shaft, calculate the shaft diameters from the equivalent bending moment formula (3) and the equivalent torsion moment formula (4) and use the larger value. Equivalent bending moment Me $$Me = \frac{1}{2}(M + \sqrt{M^2 + T^2})$$ (3) Equivalent torsion moment Te $$Te = \sqrt{M^2 + T^2}$$ $$Te = \tau a \times Zp$$ T: Maximum torsion moment #### Stiffness of spline shaft The torsion angle of the spline shaft caused by torsion moment must not exceed 0.25° per 1 meter. $$\theta = \frac{T \times L}{G \times Ip} \times \frac{360}{2\pi}$$ $$0.25^{\circ} \ge \frac{1000}{L} \theta$$ θ : Torsion angle L : Spline shaft length mm G: Shear Modulus 7.9×10⁴ N/mm² Ip : Polar moment of inertia of section area of spline shaft mm⁴ (See Table 13) ### **Spline shaft sectional characteristics** Table 13 Spline shaft sectional characteristics | Size | Moment o
section
mi | | | nodulus : Z
m³ | | at of inertia of spline shaft: I_p | Polar section modulus : Z_p mm ³ | | | | |------|---------------------------|--------------|-------------|-------------------|-------------|--------------------------------------|---|--------------|--|--| | | Solid shaft | Hollow shaft | | | | 2 | 0.60 | _ | 0.65 | _ | 1.4 | _ | 1.4 | _ | | | | 3 | 3.6 | _ | 2.5 | _ | 7.5 | _ | 5.0 | _ | | | | 4 | 12 | 12 | 6.0 | 6.0 | 24 | 24 | 12 | 12 | | | | 5 | 29 | 28 | 12 | 11 | 59 | 58 | 24 | 23 | | | | 6 | 61 | 60 | 21 | 20 | 120 | 120 | 41 | 41 | | | | 8 | 190 | 190 | 49 | 47 | 390 | 380 | 98 | 96 | | | | 10 | 470 | 460 | 95 | 93 | 960 | 940 | 190 | 190 | | | | 12 | 990 | 920 | 170 | 160 | 2 010 | 1 880 | 330 | 310 | | | | 15 | 1 580 | _ | 240 | _ | 3 260 | _ | 480 | _ | | | | 20 | 5 100 | _ | 570 | _ | 10 500 | _ | 1 150 | _ | | | | 25 | 12 000 | _ | 1 080 | _ | 24 800 | _ | 2 200 | _ | | | | 30 | 25 300 | _ | 1 890 | _ | 52 200 | _ | 3 840 | _ | | | ### **Load Direction and Load Rating** The MAG and LSAG series must be used with their load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 14. Table 14 Load ratings corrected for load direction | Load rating and load | | dynamic load | rating | Basic | c static load r | ating | | |----------------------|----------|---------------|---------------|----------|-----------------|----------------------------|--| | direction | l | oad direction | ו | ı | oad direction | י | | | Size | Downward | Upward | Lateral | Downward | Upward | Lateral | | | 2~12 | С | С | 1.47 <i>C</i> | C_0 | C_{0} | 1.73 <i>C</i> ₀ | | | 15~30 | С | С | 1.13 <i>C</i> | C_{0} | C_{0} | 1.19 <i>C</i> ₀ | | ### **Identification number and quantity for ordering** To order an assembled set of MAG and LSAG series, please specify the number of sets based on the number of spline shafts. For single external cylinder or single spline shaft of the interchangeable specification, please specify the number of units. ### **Dimensions of Attached Key** The MAG and LSAG series standard types have keys shown in Table 15 attached. Table 15 Dimensions and tolerance of attached key Remark: No key is attached to the Size 2, 3, and 4 series. For details of how to fix the key, see page II-121. ### Lubrication Lithium-soap base grease with extreme-pressure additive (Alvania EP Grease 2 [SHOWA SHELL SEKIYU K. K.]) is prepacked in MAG and LSAG series. Additionally, MAG series has C-Lube placed in the recirculation part of balls, so that the interval for reapplicating lubricant can be extended and maintenance works such as grease job can be reduced significantly. Perform re-greasing as below. (1) Size 2, 3, and 4 series Specify either direct application of grease to the spline shaft raceway surface or oil hole specification (/OH). Note that the oil hole specification (/OH) is not available for the Size 2 series (2) Size 5 and higher series Apply grease directly to the spline shaft raceway surface or the rolling elements. You may also specify the oil hole specification (/OH). ### **Dust Protection** The external
cylinders of MAG and LSAG series are equipped with special rubber seals as standard for dust protection. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the spline shaft, it is recommended to attach a protective cover to the linear motion mechanism. The Size 2, 3, and 4 series are not provided with seals. If the Size 3 and 4 series with seals is needed, contact IKO. ### **Precaution for Use** #### Fitting of external cylinder Generally, transition fit (J7) is used for fitting between the external cylinder and the housing bore. When high accuracy and high rigidity are not required, clearance fit (H7) can also be used. #### 2 Typical mounting structure Mounting examples of the external cylinder are shown in Fig. 1 The rotation detent for external cylinders of the Size 2, 3, and 4 series should be mounted using the countersink provided on the external cylinder. Use screws M1.2 to M1.6 for Size 2, M1.6 to M2 for Size 3, and M2 to M2.5 for Size 4. At this point, be careful not to deform the external cylinder with screws. #### **3** Multiple external cylinders used in close proximity When using multiple external cylinders in close proximity, greater load may be applied than the calculated value depending on the accuracy of the mounting surfaces and reference mounting surfaces of the machine or device. In such cases, allowance for greater applied load than the calculated value should be made. If two or more external cylinders are assembled on a spline shaft and two or more keys are used to fix the rotational direction of the external cylinder, the keyway position of the external cylinders are aligned before delivery. Please contact IKO. #### 4 Additional machining of spline shaft end The spline shaft is hardened by induction hardening. When additional machining on the shaft end is needed, make sure that the maximum diameter of the shaft end machining part does not exceed the dimension d_1 in the dimension table. Spline shafts with special shaft end shapes can be prepared upon request. Contact IKO for further information. #### **6** Operating temperature MAG Series contains C-Lube. The operating temperature should not exceed 80°C. The maximum operating temperature for LSAG series is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO. When specifying LSAG series special specification with C-Lube plate (supplemental code /Q), utilize it below 80°C. #### Arrangement of flange type (non-interchangeable specification) external cylinder Table 16 shows arrangements of multiple flange type external cylinders in non-interchangeable specification. Arrangements that are not in Table 16 can be prepared upon request. Contact IKO for further information. Table 16 Arrangement of flange type (Noninterchangeable specification) external cylinder | Number of external cylinders | Arrangement of external cylinders | |------------------------------|-----------------------------------| | 1 | | | 2 | - | | 3 | | | 4 | | | 5 | | | 6 | | #### When mounting multiple assembled sets at the same time For interchangeable specification products, assemble an external cylinder and a spline shaft with the same interchangeable code ("S1" or "S2"). For non-interchangeable specification products, use the same combination of external cylinder and spline shaft upon delivery. #### 3 Assembly of external cylinder on spline shaft When assembling the external cylinder on the spline shaft, correctly fit the grooves of the external cylinder and the spline shaft and move the external cylinder softly in parallel direction. Rough handling may result in damaging of seals or dropping of steel balls. The non-interchangeable specification products are already adjusted so as to provide the best accuracy when the ING marks of the external cylinder and the spline shaft face the same direction (see Fig. 2). Be careful not to change the assembly direction. Fig. 2 Assembly direction of external cylinder #### Mounting of external cylinder When press-fitting the external cylinder to the housing, assemble them correctly by using a press and a suitable jig fixture. (See Fig. 3.) Fig. 3 Press-fitting of external cylinder 1N=0.102kgf=0.2248lbs 1mm=0.03937inch ### **IKO** C-Lube Linear Ball Spline MAG Standard type **MAG·LSAG** Shape 10 12 15 20 25 30 | | MAG | |------------------------------------|------| | AG(L)T | LSAG | | bllow shaft dimension for LSAG(L)T | LSAG | | | LSAG | | | | | Identification | n number | geable | Ma | ass (Ref.)
g | | Externa | l cylind | er dime
m | | and toler | ances | | | \$ | Spline s | haft dir | nensior
mm | ns and toleranc | es | Basic dynamic load rating (4) | Basic static load rating (4) | Dynamic torque rating (4) | Static torque rating (4) | Static momer | nt rating (4) | |------------------|----------------------------|---------------------|-------------------|------------------------------|----|-------------|----------------------------|--------------|-----|------------------|-------|-----|---|----|-------------|----------|---------------|-----------------|-------------------|-------------------------------|------------------------------|---------------------------|--|-----------------------------|--| | MAG series | LSAG series
(No C-Lube) | nterchar | External cylinder | Spline shaft
(per 100 mm) | D | Dim. D | $L_{\scriptscriptstyle 1}$ | L_2 | W | Dim. W tolerance | t | l e | d | | Dim. d | $d_1(2)$ | d_2 | L(3) | Maximum
length | C
N | C_{0} N | <i>T</i>
N⋅m | $T_{\scriptscriptstyle 0}$ N \cdot m | T_{X} N·m | $T_{\scriptscriptstyle Y}$ N \cdot m | | _ | LSAG 2(1) | | 1.0 | 2.3 | 6 | 0 -0.008 | 8.5 | 4.7 | _ | _ | 0.7 | _ | 2 | | 0-0.010 | 1.2 | _ | 50 100 | 100 | 222 | 237 | 0.28 | 0.30 | 0.22
1.4 | 0.39
2.4 | | _ | LSAG 3(1) | _ | 2.1 | 5.4 | 7 | 0 -0.009 | 10 | 5.9 | _ | _ | 0.8 | _ | 3 | | 0.010 | 2.2 | _ | 100 150 | 150 | 251 | 285 | 0.45 | 0.51 | 0.31
1.9 | 0.53
3.3 | | MAG 4(1) | LSAG 4(1) |
 - | 2.5 | 9.6 | | 0.003 | 15
12 | 7.9 | | | | | | | 0.010 | | _ | | 200 | 303 | 380 | 0.70 | 0.87 | 0.52
3.80
0.52
2.9 | 0.90
6.50
0.90
5.0 | | MAGT 4(1) | LSAGT 4(1) | -
 - | | 8.2 | 8 | -0.009 | 15
12 | | _ | _ | 1 | _ | 4 | _ | 0-0.012 | 3.2 | 1.5 | 100 150 | 150 | | | | | 0.52
3.80
0.52
2.9 | 0.90
6.50
0.90
5.0 | | MAGL 4(1) | - | _ | 4.1 | 9.6 | | | 21 | 12.0 | | | | | | | | | _ | | 200 | 441 | 665 | 1.00 | 1.50 | 1.50
8.60 | 2.60
15.0 | | MAGLT 4(1) | _ | _ | 4.1 | 8.2 | | | 21 | 13.9 | | | | | | | | | 1.5 | | 150 | 441 | 003 | 1.00 | 1.50 | 8.60 | 15.0 | | MAGT 5 | LSAG 5 | 0 | 4.8 | 14.9
12.4 | _ | | 18 | 9.4 | | | | | | | | | 2 | | | 587 | 641 | 1.8 | 1.9 | 1.0
7.9 | 1.8
13.6 | | MAGL 5 | LSAGL 5 | 0 | 8.1 | 14.9 | 10 | -0.009 | 26 | 16.9 | 2 | +0.014 | 1.2 | 6 | 5 | _ | 0-0.012 | 4.2 | _ | 100 150 | 200 | 879 | 1 180 | 2.6 | 3.5 | 3.2
19.3 | 5.5
33.4 | | MAGLT 5 | LSAGLT 5 | 0 | 0.1 | 12.4 | | | 20 | 10.0 | | | | | | | | | 2 | | | 070 | 1 100 | 2.0 | 0.0 | 19.3 | 33.4 | | MAGT 6 | LSAG 6 | 0 | 8.9 | 19
16.5 | _ | | 21 | 12.4 | | | | | | | | | - | | | 711 | 855 | 2.5 | 3.0 | 1.7
11.7 | 3.0
20.3 | | MAGL 6 | LSAGL 6 | | | 19 | 12 | -0.011 | | | 2 | +0.014
0 | 1.2 | 8 | 6 | - | 0-0.012 | 5.2 | | 150 200 | 300 | | | | | | | | MAGLT 6 | LSAGLT 6 | 0 | 14.5 | 16.5 | - | | 30 | 21.4 | | | | | | | | | 2 | | | 1 030 | 1 500 | 3.6 | 5.2 | 5.0
27.6 | 8.6
47.8 | | MAG 8 | LSAG 8 | 0 | 15.9 | 39 | | | 25 | 14.6 | | | | | | | | | - | | 500 | 1 190 | 1 330 | 5.5 | 6.2 | 3.3
22.0 | 5.6
38.1 | | MAGT 8 | LSAGT 8 | 0 | | 33 | 15 | 0
-0.011 | | | 2.5 | +0.014 | 1.5 | 8.5 | 8 | | 0
-0.015 | 7 | 3 | 150 200 250 | 400 | | | | | 22.0 | 30.1 | | MAGI 8 | I SAGL 8 | | | 39 | | -0.011 | | | | U | | 1 | | - | -0.015 | | _ | | 500 | | | | | | | Notes (1) No seal is included. MAGLT 8 (2) d_1 represents the maximum diameter for end machining. LSAGLT 8 26.5 (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. 26.6 (4) The direction of basic dynamic load rating (C), basic static load rating (C_0) , dynamic torque rating (T), static torque rating and static moment rating (T_0, T_y, T_y) are shown in the sketches below. The upper values of $T_{\rm v}$ and $T_{\rm v}$ are for one external cylinder and the lower values are for two external cylinders inclose contact. ### **IKO** C-Lube Linear Ball Spline MAG $\begin{array}{l} \text{MAGT} \\ \text{Hollow shaft dimension for LSAG}(L)T \end{array}$ | Identification | Identification number Open column | | | | | External cylinder dimensions and tolerances mm | | | | | | | | Spline shaft dimensions and tolerances mm | | | | | | es | Basic dynamic load rating (3) | Basic static load rating (3) | Basic static load rating (3) Dynamic torque rating (3) Static torque rating (3) Static moment rating (3) | | | nt rating (3) | |----------------|--------------------------------------|-----------|-------------------|---------------------------|----|--|-------|-------|-----|------------------|-----|-----|------|---|-------------|----------|-------|----------------------|-------|----------------|-------------------------------|------------------------------|--|-------------|-------------------|--------------------------------------| | MAG series | LSAG series
(No C-Lube) | Interchan | External cylinder | Spline shaft (per 100 mm) | D | Dim. D tolerance | L_1 | L_2 | W | Dim. W tolerance | t | l e | d | | Dim.
d | $d_1(1)$ | d_2 | L(2) | | Maximum length | C
N | C ₀ | <i>T</i> N⋅m | T_{0} N·m | T_{X} $N\cdotm$ | $T_{\scriptscriptstyle Y}$ $N\cdotm$ | | MAG 10 | LSAG 10 | 0 | 31.5 | | | tolorarios | 30 | 18.2 | | toloranoo | | | | | tolorarioo | | _ | | | longar | 1 880 | 2 150 | 10.9 | 12.5 | 7.0
41.5 | 12.1
71.9 | | MAGT 10 | LSAGT 10 | 0 | | 51 | 19 | 0 -0.013 | | | 3 | +0.014 | 1.8 | 11 | 10 | | 0
-0.015 | 8.9 | 4 | 200 300 | 0 | 600 | | | | | 41.5 | 71.9 | | | LSAGL 10 | 0 | 56.5 | 60.5
51 | | 0.010 | 47 | 34.9 | | | | | | | 0.010 | | 4 | | | | 2 850 | 4 040 | 16.6 | 23.4 | 22.7
115 | 39.3
200 | | MAG 12 | LSAG 12 | 0 | 44 | 87.5 | | | 35 | 23 | | | | | | | | | _ | | | | 2 180 | 2 690 | 14.8 | 18.3 | 10.6
59.1 | 18.3
102 | | MAGT 12 | LSAGT 12 | 0 | | 66 | 21 | 0 -0.013 | | | 3 | +0.014 | 1.8 | 15 | 12 | | 0
-0.018 | 10.9 | 6 | 200 300 | 400 | 800 | | | | | 00.1 | | | | LSAGL 12
LSAGLT 12 | 0 | 76.8 | 87.5
66 | | | 54 | | | | | | | | | | 6 | | | | 3 220 | 4 850 | 21.9 | 33.0 | 32.2
157 | 55.7
272 | | _ | LSAG 15 | 0 | 59.5 | - 111 | 23 | 0 | 40 | 27 | 3.5 | +0.018 | 2 | 20 | 12.6 | | 0 | 11.6 | - | 200 300 | 100 | 1 000 | 4 180 | 6 070 | 31.3 | 45.6 | 27.8
152 | 33.2
181 | | _ | LSAGL 15 | 0 | 110 | | 23 | -0.013 | 65 | 52 | 3.5 | 0 | 2 | 20 | 13.6 | | -Ŏ.018 | 11.0 | _ | 200 300 | 0 400 | 1 000 | 6 400 | 11 500 | 48.0 | 86.5 | 94.0
449 | 112
535 | | _ | LSAG 20 | 0 | 130 | 202 | 30 | 0 -0.016 | 50 | 33 | 4 | +0.018 | 2.5 | 26 | 18.2 | | 0 | 15.7 | | 300 400 | 500 | 1 000 | 6 600 | 9 040 | 66.0 | 90.4 | 48.6
288 | 58.0
343 | | _ | LSAGL 20 | 0 | 198 | 202 | | -0.016 | 71 | 54 | 7 | 0 | 2.0 | 20 | 10.2 | | -ŏ.021 | 13.7 | _ | 600 | | 1 000 | 9 270 | 15 100 | 92.7 | 151 | 127
650 | 151
774 | | _ | LSAG 25 | 0 | 220 | 310 | 37 | 0 -0.016 | 60 | 39.2 | 5 | +0.018 | 3 | 29 | 22.6 | | 0 | 19.4 | | 300 400
600 800 | 500 | 1 200 | 11 200 | 14 300 | 139 | 178 | 92.8
551 | 111
656 | | _ | LSAGL 25 | 0 | 336 | 010 | | -0.016 | 84 | 63.2 | | U | | 25 | 22.0 | | -ŏ.021 | 15.4 | _ | 600 800 | J | 1 200 | 15 400 | 23 200 | 193 | 290 | 229
1 190 | 273
1 420 | | _ | LSAG 30 | 0 | 430 | 450 | 45 | 0 -0.016 | 70 | 43 | 7 | +0.022 | 4 | 35 | 27.2 | | 0 , | 23.5 | _ | 400 500
700 1 100 | 600 | 1 200 | 15 400 | 19 400 | 231 | 292 | 147
874 | 176
1 040 | | _ | LSAGL 30 | 0 | 634 | 750 | +3 | -0.016 | 98 | 71 | ' | 0 | 7 | 33 | 21.2 | | -0.021 | 20.0 | - | 700 1 10 |) | 1 200 | 21 300 | 31 600 | 320 | 474 | 364
1 900 | 434
2 260 | Notes (1) d_1 represents the maximum diameter for end machining. - (2) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. - (3) The direction of basic dynamic load rating (C), basic static load rating (C_0) , dynamic torque rating (T), static torque rating and static moment rating (T_0, T_x, T_y) are shown in the sketches below. The upper values of T_v and T_v are for one external cylinder and the lower values are for two external cylinders inclose contact. ### **IKO** C-Lube Linear Ball Spline MAG Flange type **MAGF** · LSAGF Shape | Identification | number | geable | Ma | ass (Ref.)
g | | Exte | ernal c | ylinder | dimen
mn | isions a | and tol | erance | S | | | Spline s | haft di | imensi
mi | ons and toleran | ices | Basic dynamic load rating (4) | Basic static load rating (4) | Dynamic torque rating (4) | Static torque rating (4) | Static mome | ent rating(4) | |----------------|----------------------------|-----------|-------------------|---------------------------|----|------------------|----------------------------|---------|-------------|----------|---------|--------|-----|-------|---|------------------|-------------|--------------|-----------------|----------------|-------------------------------|------------------------------|---------------------------|--|-------------------|---------------------------------------| | MAG series | LSAG series
(No C-Lube) | Interchan | External cylinder | Spline shaft (per 100 mm) | D | Dim. D tolerance | $L_{\scriptscriptstyle 1}$ | L_2 | D_1 | В | E | T | pcd | d_3 | d | Dim. d tolerance | $d_1^{(2)}$ | d_2 | L(3) | Maximum length | C
N | C ₀ | T
N⋅m | $T_{\scriptscriptstyle 0}$ N \cdot m | T_{X} $N\cdotm$ | T_{\scriptscriptstyleY} N \cdot m | | _ | LSAGF 2(1) | - | 1.9 | 2.3 | 6 | -0.008 | 8.5 | 4.7 | 15.5 | 8 | 3.4 | 1.5 | 11 | 2.4 | 2 | -0.010 | 1.2 | - | 50 100 | 100 | 222 | 237 | 0.28 | 0.30 | 0.22
1.4 | 0.39
2.4 | | _ | LSAGF 3(1) | - | 3.7 | 5.4 | 7 | -0.009 | 10 | 5.9 | 18 | 9 | 4 | 1.9 | 13 | 2.9 | 3 | -0.010 | 2.2 | - | 100 150 | 150 | 251 | 285 | 0.45 | 0.51 | 0.31
1.9 | 0.53
3.3 | | _ | LSAGF 4(1) | - | 5.1 | 9.6 | 8 | | 12 | 7.9 | 01 | 10 | 4.6 | 2.5 | 15 | 3.4 | 4 | | 3.2 | - | 100 150 | 200 | 303 | 380 | 0.70 | 0.87 | 0.52
2.9 | 0.90
5.0 | | _ | LSAGFT 4(1) | - | 5.1 | 8.2 | 0 | -0.009 | 12 | 7.9 | 21 | 10 | 4.0 | 2.5 | 15 | 3.4 | 4 | -0.012 | 3.2 | 1.5 | 100 150 | 150 | 303 | 360 | 0.70 | 0.07 | 2.9 | 5.0 | | MAGF 5 | LSAGF 5 | 0 | 8.9 | 14.9 | | | 18 | 9.4 | | | | | | | | | | _ | | | 587 | 641 | 1.8 | 1.9 | 1.0
7.9 | 1.8
13.6 | | MAGFT 5 | LSAGFT 5 | 0 | 0.9 | 12.4 | 10 | -0.009 | 10 | 9.4 | 23 | 18 | 7 | 2.7 | 17 | 3.4 | 5 | 0 -0.012 | 4.2 | 2 | 100 150 | 200 | 367 | 041 | 1.0 | 1.9 | 7.9 | 13.6 | | _ | LSAGFL 5 | 0 | 12 | 14.9 | 10 | -0.009 | 26 | 16.9 | 23 | 10 | , | 2.1 | '' | 3.4 | | -0.012 | 4.2 | _ | 100 130 | 200 | 879 | 1 180 | 2.6 | 3.5 | 3.2
19.3 | 5.5
33.4 | | _ | LSAGFLT 5 | 0 | | 12.4 | | | | | | | | | | | | | | 2 | | | | | | | 19.5 | 33.4 | | MAGF 6 | LSAGF 6 | 0 | 13.9 | 19 | | | 21 | 12.4 | | | | | | | | | | _ | | | 711 | 855 | 2.5 | 3.0 | 11:7 | 3.0
20.3 | | MAGFT 6 | LSAGFT 6 | 0 | | 16.5 | 12 | 0 -0.011 | | | 25 | 20 | 7 | 2.7 | 19 | 3.4 | 6 | 0 040 | 5.2 | 2 | 150 200 | 300 | | | | 0.0 | 11.7 | 20.3 | | _ | LSAGFL 6 | 0 | 19.5 | 19 | | -0.011 | 30 | 21.4 | | | | | | | | -Ŏ.012 | 0.2 | _ | | | 1 030 | 1 500 | 3.6 | 5.2 | 5.0
27.6 | 8.6
47.8 | | _ | LSAGFLT 6 | 0 | 10.0 | 16.5 | | | | 21.4 | | | | | | | | | | 2 | | | 1 000 | 1 000 | 0.0 | 0.2 | 27.6 | 47.8 | | MAGF 8 | LSAGF 8 | 0 | 23.5 | 39 | | | 25 | 14.6 | | | | | | | | | | _ | | 500 | 1 190 | 1 330 | 5.5 | 6.2 | 3.3
22.0 | 5.6
38.1 | | MAGFT 8 | LSAGFT 8 | | 23.3 | 33 | 15 | 0 | 20 | 14.0 | 28 | 22 | 9 | 3.8 | 22 | 3.4 | 8 | 0 -0.015 | 7 | 3 | 150 200 250 | 400 | 1 190 | 1 330 | 5.5 | 0.2 | 22.0 | 38.1 | | _ | LSAGFL 8 | 0 | 34.1 | 39 | 15 | -0.011 | 37 | 26.6 | 28 | 22 | 9 | 3.0 | 22 | 3.4 | 0 | -0.015 | ' | _ | 130 200 230 | 500 | 1 800 | 2 470 | 8.4 | 11.5 | 10.3
56.3 | 17.8
97.5 | | _ | LSAGFLT 8 | 0 | 34.1 | 33 | | | 31 | 20.0 | | | | | | | | | | 3 | | 400 | 1 000 | 2410 | 0.4 | 11.5 | 56.3 | 97.5 | Notes (1) No seal is included. - (2) d_1 represents the maximum diameter for end machining. - (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. - (4) The direction of basic dynamic load rating (C), basic static load rating (C_0), dynamic torque rating (T), static torque rating and static moment rating (T_0, T_y, T_y) are shown in the sketches below. - The upper values of T_x and T_y are for one external cylinder and the lower values are for two external cylinders inclose contact. ### **IK** C-Lube Linear Ball Spline MAG - Notes (1) d, represents the maximum diameter for end machining. - (2) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. - (3) The direction of basic dynamic load rating (C), basic static load rating (C_0), dynamic torque rating (T_0), static torque rating and static moment rating (T_0 , T_y , T_y) are shown in the sketches below. The upper values of T_v and T_v are for one external cylinder and the lower values are for two external cylinders inclose contact. ## **Points** Block type for easy mounting The screw holes for mounting are provided on the slide unit, so that it can be easily mounted to the machine or device using bolts. Stainless steel selections for excellent corrosion resistance Products made of stainless steel are highly resistance to corrosion, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment. ### **Identification Number and Specification** ### Example of an identification number The specification of LSB series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a material code, a preload symbol, a classification symbol, an interchangeable code, and a supplemental code for each specification to apply. # Identification Number and Specification —Model · Spline Shaft Shape · Size · Slide Unit · | Model | Block Type Linear Ball S
(LSB series) | pline | : LSB | |-------------------------|--|---------------------|---| | | For applicable models a | nd sizes, see | Table 1. | | 2 Spline shaft shape | Solid shaft
Hollow shaft | : No symbol
: T | For applicable models and sizes, see Table 1. | | 3 Size | 6, 8, 10, 13, 16, 20, 25 | | For applicable models and sizes, see Table 1. | | 4 Number of slide units | | : C O | For an assembled set, indicates the number of slide units assembled on a spline shaft. For a single slide unit, only "C1" is specified. | | 5 Spline shaft length | | : R O | The spline shaft length is indicated in mm. For standard and
maximum lengths, see the dimension table. | | 6 Material type | High carbon steel made
Stainless steel made | : No symbol
: SL | For applicable models and sizes, see Table 1. | Table 1 Models and sizes of LSB series | Material | Shape | Model | Size | | | | | | | |---------------------------|--------------|-------|------|------|------|----|----|----|----| | Material | Snape | Model | 6 | 8 | 10 | 13 | 16 | 20 | 25 | | on steel
de | Solid shaft | LSB | ○(¹) | ○(¹) | O(1) | 0 | 0 | 0 | 0 | | High carbon steel
made | Hollow shaft | LSBT | ○(¹) | ○(¹) | O(1) | 0 | 0 | 0 | 0 | | Stainless steel made | Solid shaft | LSBSL | 0 | 0 | 0 | - | - | - | - | Note (1) Slide units of size 6, 8, and 10 series are stainless steel-made only. When high carbon steel-made is specified for an assembled set, only the spline shaft will be high carbon steel-made. Remark: The LSB series are all interchangeable specification. Non-interchangeable specification is not available. # Preload amount Standard Light preload Standard Standard Standard Standard Specify this item for an assembled set or a single slide unit. For details of the preload amount, see Table 2. For applicable preload types, see Table 3. #### Table 2 Preload amount | Table 2 Troload amount | | | | | | | | |------------------------|-------------------|------------------------|---|--|--|--|--| | Preload
type | Preload
symbol | Preload
amount
N | Operational conditions | | | | | | Standard | (No symbol) | 0(1) | · Light and precise motion | | | | | | Light preload | T ₁ | 0.02 C ₀ | Almost no vibrations Load is evenly balanced Light and precise motion | | | | | Note (1) Indicates zero or minimal amount of preload. Remark: C_0 indicates the basic static load rating. #### Table 3 Application of preload | | Preload type (preload symbol) | | | | | | |------|-------------------------------|-------------------|--|--|--|--| | Size | Standard | Light preload | | | | | | | (No symbol) | (T ₁) | | | | | | 6 | 0 | _ | | | | | | 8 | 0 | 0 | | | | | | 10 | 0 | 0 | | | | | | 13 | 0 | 0 | | | | | | 16 | 0 | 0 | | | | | | 20 | 0 | 0 | | | | | | 25 | 0 | 0 | | | | | Accuracy class Ordinary High No symbol Specify this item for an assembled set or a single spline shaft. For details of accuracy class, see Fig. 1, Table 4 and Table 5. Table 4 Twist of grooves with respect to effective length of the spline part | | unit: | μm | |----|-------|----| | Hi | gh | | | (H | l) | | | Accuracy class | Ordinary
(No symbol) | High
(H) | |-----------------|-------------------------|-------------| | Allowable value | 33 | 13 | Remark: The values can be applied to 100 mm of the effective length of the spline at any position. Table 5 Allowable values of total radial runout of spline shaft axial line unit: μm Size Size and accuracy 6, 8 10, 13 16, 20 25 Ordinary Ordinary High Ordinary High Ordinary High Overall length of High spline shaft mm (No symbol) (H) (No symbol) (H) (No symbol) (H) (No symbol) (H) 36 34 32 200 72 46 59 56 53 200 315 133 89 83 54 71 45 58 39 315 400 185 126 103 68 83 53 70 44 400 500 236 163 123 82 95 62 78 50 500 630 151 102 112 75 88 57 630 800 190 130 137 92 103 68 800 1 000 170 115 124 83 1 000 1 250 151 102 Remark: Applied to all models of the same size. Table 6 Measuring methods of accuracy | Item | Measuring method | Illustration of measuring method | |-------------------------------------|--|---| | with respect to effective length of | While supporting the spline shaft fixed, apply a unidirectional torsion moment load to the measuring unit, place the dial gage probe vertically to the spline shaft on the side face of the sunk key attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of the spline shaft. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder. | Sunk key 100 Reference block for dial gage probe movement | | | While supporting the spline shaft at its support part or at both centers, place a dial gage probe on the outer peripheral face of the measuring unit and measure the deflection from one rotation of the spline shaft at several positions in the axial direction to obtain the maximum value. | | ### -Interchangeable Specification · Special Specification - Special specification | 9 Interchangeable | S1 specification
S2 specification | : S1
: S2 | Assemble a spline shaft and a slide unit with the same interchangeable code. Performance and accuracy of | |-------------------|--------------------------------------|--------------|--| | | | | "S1" and "S2" are the same. | For applicable special specifications, see Table 7. Table 7 Application of special specifications (Single slide unit and assembled set) /N, /U | On a sight and siff a sking | Supplemental | | | | Size | | | | |-----------------------------|--------------|---|---|----|------|----|----|----| | Special specification | code | 6 | 8 | 10 | 13 | 16 | 20 | 25 | | No seal | /N | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Under seal | /U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Remark: The combination of no seal (supplemental code/N) and under seal (supplemental code/U) is not available. ### **Load Direction and Load Rating** The LSB series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 8. Table 8 Load ratings corrected for load direction ### **Identification Number and Quantity for Ordering** To order an assembled set of LSB series, please specify the number of sets based on the number of spline shafts. For slide unit or single spline shafts, please specify the number of units. ### Moment of Inertia of Sectional Area and Section Coefficient of Spline Shaft - Table 9 Moment of inertia of sectional area and section coefficient of spline shaft | Identification number | Moment of inertia | | Section coefficient
mm ³ | | | |-----------------------|-------------------|--------------|--|--------------|--| | | Solid shaft | Hollow shaft | Solid shaft | Hollow shaft | | | 6 | 55 | 54 | 19 | 19 | | | 8 | 170 | 170 | 44 | 43 | | | 10 | 440 | 420 | 90 | 87 | | | 13 | 1 220 | 1 160 | 190 | 180 | | | 16 | 2 830 | 2 630 | 360 | 340 | | | 20 | 7 110 | 6 620 | 730 | 680 | | | 25 | 17 600 | 15 100 | 1 440 | 1 230 | | ### Lubrication Lithium-soap base grease (MULTEMP PS No.2 [KYODO YUSHI CO., LTD.]) is pre-packed in LSB series. The LSB series has grease nipple or oil hole as indicated in Table 10 and Table 11. For supply nozzle applicable to each grease nipple and dedicated supplying equipment (miniature greaser) applicable to oil holes, see Table 13 and Table 14. Table 10 Parts for lubrication | Size | Grease nipple type | Applicable supply nozzle type | |------------|--------------------|-------------------------------| | 6, 8, 10 | Oil hole | Miniature
greaser | | 13, 16, 20 | A-M3 | A-5120V A-5240V | | 25 | A-M4 | B-5120V B-5240V | Table 11 Oil hole specifications Table 12 Dimensions and shape of grease nipple | Table 12 Dime | Table 12 Dimensions and snape of grease nipple | | | | |---------------|--|--|--|--| | Model | Dimensions and shape | | | | | A-M3 | Width across flats 4 | | | | | A-M4 | Width across flats 4.5 | | | | Table 13 Miniature greaser | Identification number | Grease name | Amount | Outside diameter of grease feed needle | |-----------------------|---|---------|--| | MG10/MT2 | MULTEMP PS No.2
[KYODO YUSHI CO., LTD.] | 10ml | | | MG10/CG2 | IKO Low Dust-Generation Grease for Clean Environment CG2 | TOTTII | | | MG2.5/EP2 | Alvania EP Grease 2
[SHOWA SHELL SEKIYU K. K.] | | φ1mm | | MG2.5/CG2 | IKO Low Dust-Generation Grease for Clean Environment CG2 | 2.5ml | ΨΠΠΠ | | MG2.5/CGL | IKO Low Dust-Generation Grease for Clean Environment CGL | 2.31111 | | | MG2.5/AF2 | IKI Anti-Fretting Corrosion Grease AF2 | | | | Table 14 Types and dimensions of supply nozzle | | | | | | | |--|---|--|--|--|--|--| | Model | Dimensions and shape | | | | | | | A-5120V | Width across flats 12 Width across flats 12 PT1/8 | | | | | | | A-5240V | 240 29 Width across flats 12 PT1/8 | | | | | | | B-5120V | Width across flats 12 Width across flats 12 PT1/8 | | | | | | | B-5240V | 240 29 Width across flats 12 PT1/8 | | | | | | 1N=0.102kgf=0.2248lbs. 1mm=0.03937inch ### **Dust Protection** The slide units of LSB series are equipped with end seals as standard for dust protection. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the spline shaft, it is recommended to attach a protective cover to the linear motion mechanism. ### **Precaution for Use —** #### • Mounting surface, reference mounting surface and typical
mounting structure When mounting the LSB, properly align the reference mounting surface D of the slide unit with the reference mounting surface of the table and fix it. (See Fig. 2) Outside diameter surface of the spline shaft, reference mounting surface D and mounting surface C are precisely ground. Machining the mounting surface of the table and bed, such as machine or device, to high accuracy and mounting them properly will ensure stable linear motion with high accuracy. Reference mounting surface of the slide unit is the opposite side of the IKO mark. (See Fig. 3) Fig. 2 Reference mounting surface and typical mounting structure #### Shoulder height of reference mounting surface For the opposite corner of the mating reference mounting, it is recommended to have relieved fillet as indicated in Fig. 4. Recommended value for the shoulder height on the mating side is indicated in Table 15. Fig. 4 Corner of the mating reference mounting Table 15 Shoulder height unit: mm | Shoulder height | |-----------------| | 2 | | 2.5 | | 3 | | 3.5 | | 4 | | 5 | | 6 | | | ### 3 Additional machining of spline shaft end The spline shaft is hardened by induction hardening. When additional machining on the shaft end is needed, make sure that the maximum diameter of the shaft end machining part does not exceed the dimension d_1 in the dimension table. Spline shafts with special shaft end shapes can be prepared upon request. Contact IKO for further information. #### 4 Multiple slide units used in close proximity When using multiple slide units in close proximity, greater load may be applied than the calculated value depending on the accuracy of the mounting surfaces and reference mounting surfaces of the machine or device. In such cases, allowance for greater applied load than the calculated value should be made. In addition, special products with variation between H and N dimensions aligned can be prepared upon request. Contact IKO for further information. #### **6** Operating temperature The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO. #### When mounting multiple assembled sets at the same time Assemble a slide unit and a spline shaft with the same interchangeable code ("S1" or "S2"). #### Assembly of slide unit on spline shaft When inserting a slide unit to the spline shaft, handle with care not to pry open the shaft and drop the balls. #### Tightening torque for fixing screw Typical tightening torque for mounting of the LSB series to the steel mating member material is indicated in Table 16. When vibration and shock of the machine or device are large, fluctuating load is large, or moment load is applied, fix it by using the torque 1.2 to 1.5 times larger than the value indicated in the table as necessary. If the mating member material is cast iron or aluminum alloy, reduce the tightening torque depending on the strength characteristics of the mating member material. Table 16 Tightening torque for fixing screw | <u> </u> | | | | | | | | |-----------|----------------------------------|----------------------------|--|--|--|--|--| | | Tightening torque N⋅m | | | | | | | | Bolt size | High carbon steel-
made screw | Stainless steel-made screw | | | | | | | M2×0.4 | 0.50 | 0.31 | | | | | | | M3×0.5 | 1.8 | 1.1 | | | | | | | M4×0.7 | 4.1 | _ | | | | | | | M5×0.8 | 8.0 | _ | | | | | | | M6×1 | 13.6 | _ | | | | | | Note (1) The tightening torque is calculated based on strength division 12.9 and property division A2-70. ### **IK** Block Type Linear Ball Spline | Identification | geable | Mas | ss (Ref.) | Dime | | of ass | embly | | | | Dime | | of sli | de uni | t | | | | Spline sh | aft dir | mensio
mm | ns and tolerand | ces | Basic dynamic (4)
load rating | Basic static (4) load rating | Dynamic (4) torque rating | Static (4) torque rating | Static mome | nt rating (4) | |----------------|-----------|---------------|---------------------------|------|-------|--------|-------|-------|-------|----------------------------|-------|---------|--------|----------------------------|----------------------|-------|---|----|---------------------|----------|--------------|-----------------|----------------|----------------------------------|------------------------------|---------------------------|--|---------------------|---| | number | Interchar | Slide
unit | Spline shaft (per 100 mm) | Н | H_1 | H_2 | N | W_2 | W_3 | $W_{\scriptscriptstyle 4}$ | L_1 | L_{2} | L_3 | $L_{\scriptscriptstyle 4}$ | $n-M_1 \times$ depth | H_3 | | d | Dim. d tolerance(1) | $d_1(2)$ | d_2 | L(3) | Maximum length | C
N | <i>C</i> ₀ N | T N⋅m | $T_{\scriptscriptstyle 0}$ N \cdot m | T_{x} N \cdot m | $T_{\scriptscriptstyle{Y}}$ N \cdot m | | LSB 6 | 0 | | 21.2 | | | | | | | | | | | | | | | | | | - | | | 075 | 4 000 | 0.0 | 0.0 | 2.3 | 1.9 | | LSBT 6 | 0 | 7.6 | 18.8 | 6 | 1.1 | 9 | 6.5 | 13 | 8 | 2.5 | 20 | _ | 12.5 | _ | 2-M2×3 | 1.5 | | 6 | 0
-0.012 | 3.7 | 2 | 150 200 | 300 | 675 | 1 090 | 2.0 | 3.3 | 2.3
13.6 | 1.9
11.4 | | LSB 6 ···SL | 0 | | 21.2 | | | | | | | | | | | | | | | | | | _ | | | 540 | 875 | 1.6 | 2.6 | 1.8
10.9 | 1.5
9.1 | | LSB 8 | 0 | | 37.6 | 500 | 1 340 | 1 890 | 5.4 | 7.6 | 4.7
30.2 | 3.9
25.4 | | LSBT 8 | 0 | 18 | 32.1 | 8 | 1.3 | 12 | 9 | 18 | 12 | 3 | 25 | 8 | 15.6 | _ | 4-M3×3 | 1.5 | | 8 | 0
-0.015 | 5 | 3 | 150 200 250 | 400 | 1 040 | 1 000 | 0.4 | 7.0 | | | | LSB 8 ···SL | 0 | | 37.6 | 500 | 1 070 | 1 510 | 4.3 | 6.1 | 3.7
24.2 | 3.1
20.3 | | LSB 10 | 0 | | 59.7 | | | | | | | | | | | | | | | | | | _ | | | 1 810 | 2 760 | 9.1 | 13.8 | 9.1
53.0 | 7.6
44.5 | | LSBT 10 | | 34 | 49.8 | 10 | 1.9 | 15 | 10.5 | 21 | 15 | 3 | 31 | 10 | 21.2 | _ | 4-M3× 4 | 2.5 | . | 10 | -0.015 | 6.9 | 4 | 200 300 | 600 | | | | | | | | LSB 10 ···SL | 0 | | 59.7 | | | | | | | | | | | | | | | | | | _ | | | 1 450 | 2 200 | 7.3 | 11.0 | 7.3
42.4 | 6.1
35.6 | | LSB 13 | | 62 | 100 | 13 | 32 | 19.5 | 14 | 28 | 20 | 4 | 35 | 15 | 22.4 | 40 | 4-M3× 5 | 32 | | 13 | 0
-0.018 | 9 | _ | 200 300 400 | 800 | 3 330 | 4 290 | 21.7 | 27.9 | 15.4
96.3 | 12.9
80.8 | | LSBT 13 | 0 | | 77.9 | | 0.2 | 10.0 | | | | · | | | | | 1 10000 | 0.2 | | 10 | -0.018 | | 6 | 200 000 100 | | 0 000 | 1 200 | 2117 | 27.0 | 96.3 | 80.8 | | LSB 16 | 0 | 112 | 152 | 16 | 4.2 | 24 | 16.5 | 33 | 25 | 4 | 43 | 20 | 28.8 | 48 | 4-M4× 6 | 4 | | 16 | 0
-0.018 | 11.4 | | 200 300 400 | 1 000 | 4 980 | 6 490 | 39.9 | 51.9 | 29.7
176 | 24.9
148 | | LSBT 16 | 0 | 112 | 113 | 10 | 7.2 | 27 | 10.0 | 00 | 20 | _ | 40 | 20 | 20.0 | 40 | + WI+// O | | | 10 | -0.018 | 11.4 | 8 | 200 000 400 | 1 000 | 4 300 | 0 400 | 00.0 | 01.0 | 1/6 | 148 | | LSB 20 | 0 | 215 | 240 | 20 | 5.8 | 30 | 20 | 40 | 30 | 5 | 53 | 25 | 37.3 | 58 | 4-M5×10 | 5 | | 20 | 0
-0.021 | 15 | | 300 400 500 | 1 000 | 6 670 | 9 080 | 66.7 | 90.8 | 52.7
299 | 44.2
251 | | LSBT 20 | 0 | 210 | 178 | 20 | 5.0 | 00 | 20 | 70 | 00 | 5 | 33 | 25 | 07.0 | 50 | T IVIO / TO | | , | 20 | -0.021 | 13 | 10 | 600 | 1 000 | 0 070 | 3 000 | 50.7 | 50.0 | 299 | 251 | | LSB 25 | 0 | 403 | 376 | 25 | 6 | 37.5 | 26 | 52 | 40 | 6 | 67 | 30 | 41 8 | 70 | 4-M6×12 | 6 | | 25 | 0
-0.021 | 19.3 | | 300 400 500 | 1 200 | 10 500 | 13 400 | 136 | 175 | 95.6
566 | 95.6
566 | | LSBT 25 | | 700 | 237 | 25 | | 37.3 | 20 | 52 | 40 | U | 01 | 30 | 41.0 | 70 | T WION 12 | | | 20 | -0.021 | 13.3 | 15 | 600 800 | 1 200 | 10 300 | 10 400 | 100 | 175 | 566 | 566 | Notes (1) This does not apply to hollow shaft (LSBT). - (2) d_1 represents the maximum diameter for end machining. - (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. - (4) The direction of basic dynamic load rating (C), basic static load rating (C_0), dynamic torque rating (T_0), static torque rating and static moment rating (T_0 , T_x , T_y) are shown in the sketches below. The upper values of T_x and T_y are for one slide unit and the lower values are for two slide units in close contact. Remarks 1. Block type Linear Ball Spline are all interchangeable specification. 2. LSB 6, LSBT 6, LSB 6. LSB 6. LSB 8, LSBT 8, LSB 8. LSB 10, LSB 10, LSBT 10, and LSB 10. ## **Points** ### Achieved extremely smooth motion By building the high accuracy retainer into the limited stroke type with small recirculation resistance of the balls, a light and smooth motion with extremely small fluctuation of frictional resistance even in vertical shaft use has been achieved. ### Best for nozzle part for chip mounter Since it exhibits a stable and high positioning accuracy for stroke direction, it is best for the uses of vertical shaft and high-tact operations such as chip mounter. ### Supports special shapes We manufacture special shapes to meet the customer's uses such as end machining and external cylinder with holders. Please ask IKO for your needs. ### **Identification Number and Specification** ### Example of an identification number The specification of LS series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a preload symbol, a classification symbol, and a supplemental code for each specification to apply. ### Identification Number and Specification —Model · Spline Shaft Shape · | Model | Stroke Ball Spline
(LS series)
For applicable models | : LS and sizes, see Table 1. | |----------------------|--|--| | 2 Spline shaft shape | Solid shaft
Hollow shaft | No symbol For applicable models and sizes, see Table 1. T
| | 3 Size | 4, 5, 6 | For applicable models and sizes, see Table 1. | #### Table 1 Models and sizes of LS series | Shape | Model | | Size | | |--------------|---------|---|------|---| | Snape | iviodei | 4 | 5 | 6 | | Solid shaft | LS | 0 | 0 | 0 | | Hollow shaft | LST | 0 | 0 | 0 | | 4 Number of external cylinders | | : C1 | For the number of external cylinders assembled on a | |--------------------------------|---------------|------------------|--| | | | | spline shaft, only one unit (C1) can be specified. | | A | | | | | Spline shaft length | | : R O | The spline shaft length is indicated in mm. For standard and maximum lengths, see the dimension table. | | | | | | | 6 Preload amount | Light preload | : T ₁ | For preload amount, only light preload (T ₁) can be specified. For details of the preload amount, see Table 2. | #### Table 2 Preload amount | Table 2 Preioau amount | | | | | | | | | | |------------------------|-------------------|----------------------------|---|--|--|--|--|--|--| | Item Preload type | Preload
symbol | Preload
amount
N | Operational conditions | | | | | | | | Light preload | T ₁ | 0.02 <i>C</i> ₀ | Almost no vibrations Load is evenly balanced Light and precise motion | | | | | | | Remark: $C_{\scriptscriptstyle 0}$ indicates the basic static load rating. ### Size · Number of External Cylinders · Spline Shaft Length · Preload Amount · Accuracy Class— #### Table 3 Allowable value of each part | | Relative to axial line of supporting part of spline shaft | | | | | | | |------|---|--|--|--|--|--|--| | Size | ① Radial runout of periphery of parts mounting part (1) | ② Perpendicularity of spline part end face (1) | | | | | | | | Precision (P) | Precision (P) | | | | | | | 4 | | | | | | | | | 5 | 8 | 6 | | | | | | | 6 | | | | | | | | Note (1) The values are for the processed shaft ends. Table 4 Twist of grooves with respect to effective length of the spline part unit: µm | Accuracy class | Precision (P) | |-----------------|---------------| | Allowable value | 6 | Remark: The values can be applied to 100 mm of the effective length of the spline at any position. Table 5 Allowable values of total radial runout of splineshaft axial lineunit: μm | Total spline
m | ŭ | Precision (P) | |-------------------|-------|---------------| | Over | Incl. | , , , , | | _ | 200 | 26 | | 200 | 300 | 57 | Table 6 Measuring methods of accuracy | Item | Measuring method | Illustration of measuring method | |---|--|---| | of parts mounting part
with respect to axial line
of supporting part of | While supporting the spline shaft at its support part, place the dial gage probes on the outer peripheral faces of the parts mounting part and measure the deflection from one rotation of the spline shaft. | | | (1) Perpendicularity of spline part end face with respect to axial line of supporting part of spline shaft (see Table 32) | While supporting the spline shaft at its support part and one spline shaft end, place the dial gage probes on the spline end faces and obtain perpendicularity by measuring the deflection from one rotation of the spline shaft. | | | Twist of grooves with
respect to effective
length of the spline part
(See Table 4) | While supporting the spline shaft fixed, apply a unidirectional torsion moment load to the measuring unit, place the dial gage probe vertically to the spline shaft on the side face of the sunk key attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of the spline shaft. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder. | Sunk key 100 Reference block for dial gage probe movement | | Total radial runout of axial line of spline shaft (See Table 5) | While supporting the spline shaft at its support part or at both centers, place a dial gage probe on the outer peripheral face of the external cylinder and measure the deflection from one rotation of the spline shaft at several positions in the axial direction to obtain the maximum value. | | Note (1) The accuracy are for the processed shaft ends. 1N=0.102kgf=0.2248lbs. 1mm=0.03937inch Special specification Stainless steel spline shaft /S Applicable to the solid shaft of size 5 and 6. ### Stainless steel spline shaft /S The material of the solid spline shaft is changed to stainless steel. The load rating will change to a value obtained by multiplying the load rating for the steel spline shaft by a factor of 0.8. ### **Allowable Load** Allowable load refers to load of smooth rolling motion on contact surface to which maximum contact stress is applied and the sum of whose elastic deformation of rolling elements and raceway is small. Therefore, use applied load within the allowable load range if very smooth rolling motion and high accuracy are required. ### **Load Direction and Load Rating** The LS series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 7. Table 7 Load ratings corrected for load direction | Load rating and load | | c dynamic load ra | ating | Basic static load rating | | | | | | | | |----------------------|----------|-------------------|---------------|--------------------------|---------|----------------------------|--|--|--|--|--| | direction | | Load direction | | Load direction | | | | | | | | | Size | Downward | Upward | Lateral | Downward | Upward | Lateral | | | | | | | 4, 5, 6 | С | С | 1.47 <i>C</i> | C_{0} | C_{0} | 1.73 <i>C</i> ₀ | | | | | | ### **Moment of Inertia of Sectional Area and Section Coefficient of Spline Shaft** Table 8 Moment of inertia of sectional area and section coefficient of spline shaft | Size | section | f inertia of
nal area
m4 | Section coefficient
mm³ | | | | | | |------|-------------|--------------------------------|----------------------------|-----------------|--|--|--|--| | | Solid shaft | Hollow
shaft | Solid shaft | Hollow
shaft | | | | | | 4 | 12 | 12 | 6 | 6 | | | | | | 5 | 29 | 29 | 12 | 12 | | | | | | 6 | 61 | 61 | 21 | 21 | | | | | ### Grease is not pre-packed in the LS series, so please perform adequate lubrication as needed. Upon delivery, anti-rust oil is applied. Therefore, perform cleaning with clean solution before mounting and apply high-quality lubrication oil or grease before use. For grease lubrication, use of high-quality lithium-soap base grease is recommended. Since no grease nipple or oil hole is provided, apply grease directly to the raceway part of the spline shaft when supplying the ### **Dust Protection** No dust protection seal is provided for LS series. For applications in other than clean environment, cover the entire unit with a protective case, etc. to prevent harmful foreign substances such as dust and particles from outside from entering. ### **Precaution for Use** #### Fitting of external cylinder Generally, transition fit (J7) is used for fitting between the external cylinder and the housing bore. When high accuracy and high rigidity are not required, clearance fit (H7) can also be used. #### 2 Typical mounting structure Mounting examples of the external cylinder are shown in Fig. 1. The rotation detent for external cylinder can be made by using the screw hole provided on the external cylinder. The fixing thread depth must not exceed the maximum fixing thread depth indicated in the dimension table. Since the screw hole for the external cylinder is penetrated, the spline shaft or retainer will be pushed by the screw if the fixing thread depth is too deep, and the running accuracy and life will be adversely affected. Since there is no built-in mechanical stopper to regulate linear motion, install a stopper mechanism in proximity if risk of overstroke exists. ### Assembly of external cylinder on spline shaft When assembling the external cylinder on the spline shaft, correctly fit the grooves of the external cylinder and the spline shaft and move the external cylinder softly in parallel direction. Rough handling may result in dropping of steel balls. After assembling, correct the position of the retainer to be in the center of the external cylinder. After assembling the external cylinder to the housing, insert the shaft softly. Move the retainer as well as the shaft until they contact one side of the surface and stop. Then push the shaft softly not to damage balls or raceway to the position a half of the maximum stroke length and return it by the same length (a half of the maximum stroke) so that the retainer is positioned regularly at the center of the external cylinder. The products are already adjusted so as to provide the best accuracy when the IKD marks of the external cylinder and the spline shaft face the same direction. Be careful
not to change the assembly direction. (See Fig. 2) #### 3 Handling upon operation Stroke should be used within the effective stroke range shown in the dimension table The retainer may be deviated from the right position due to offset load or irregular and high-velocity motion, etc. Fully stroke it once in certain operating time or certain number of reciprocating motion to correct the retainer position. ### 4 Additional machining of spline shaft end The spline shaft is hardened by induction hardening. When additional machining on the shaft end is needed, make sure that the maximum diameter of the shaft end machining part does not exceed the dimension d_1 in the dimension table. Spline shafts with special shaft end shapes can be prepared upon request. Contact IKO for further information. #### **6** Operating temperature The maximum operating temperature for LS series is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO. Fig. 2 Mounting direction of external cylinder #### Mounting of external cylinder When press-fitting the external cylinder to the housing, assemble them correctly by using a press and a suitable jig fixture. (See Fig. 3) 1N=0.102kaf=0.2248lbs 1mm=0.03937inch ### IKU Stroke Ball Spline Hollow shaft dimension for LST | ldoutification musels of | angeable | Mass (Ref.) | | External cylinder dimensions and tolerances mm | | | | | Spline shaft dimensions and tolerances mm | | | | | | Effective
stroke
length | | Mounting
Maximum
dimensions | Basic
dynamic
load rating(3) | Basic static load rating (3) | load (3) | Dynamic torque rating (3) | Static torque rating (3) | Static moment rating | | | | |---------------------------|----------|-------------------|---------------------------|--|------------------|----------------------------|-------|------|---|---|------------------|---------------------------|-------|-----|-------------------------------|-------------------|-----------------------------------|------------------------------------|------------------------------|----------|---------------------------|--------------------------|----------------------|--------------------------------|---------------------|---| | Identification number t | | External cylinder | Spline shaft (per 100 mm) | D | Dim. D tolerance | $L_{\scriptscriptstyle 1}$ | L_2 | M | Maximum fixing thread depth | d | Dim. d tolerance | <i>d</i> ₁ (1) | d_2 | L | | Maximum
length | mm | mm | D_{a} mm | C
N | <i>C</i> ₀ N | F
N | T
N⋅m | $T_{\scriptscriptstyle 0}$ N·m | T_{x} $N \cdot m$ | $T_{\scriptscriptstyle m Y}$ N \cdot m | | LS 4 | - | 5.7 | 9.6 | 0 | 0 | 24 | 10 | M2 | 1.3 | 1 | 0 | 2.0 | _ | 100 | 150 | 200 | 10 | 13.2 | 5 | 285 | 380 | 127 | 0.66 | 0.87 | 0.88 | 1.5 | | LST 4 | | 5.7 | 8.6 | 0 | -0.009 | 24 | 10 | IVIZ | 1.5 | 4 | -0.012 | 3.2 | 1.5 | 100 | 7 130 | 150 | 10 | 13.2 | 5 | 200 | 360 | 127 | 0.00 | 0.67 | 0.00 | 1.5 | | LS 5 | | 8.9 | 14.9 | 10 | 0 | 27 | 12 | M2 | 1.4 | 5 | 0 | 12 | _ | 100 | 150 | 200 | 10 | 14 | 7 | 616 | 748 | 249 | 1.8 | 2.2 | 2.0 | 3.5 | | LST 5 | | 0.9 | 12.4 | 10 | -0.009 | ۷1 | 12 | IVIZ | 1.4 | | -0.012 | 4.2 | 2 | 100 | 130 | 200 | 10 | 14 | , | 010 | 740 | 249 | 1.0 | ۷.۷ | 2.0 | 3.3 | | 18 6 | | | 10 | | | | | | | | | | _ | | | | | | | | | | | | | | 150 200 300 10 13.6 673 855 285 2.4 3.0 2.6 4.4 Notes (1) d_1 represents the maximum diameter for end machining. LST 6 (2) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number. (3) The direction of basic dynamic load rating (C), basic static load rating (C_0), allowable load (F), dynamic torque rating (T_0), static torque rating and static moment rating (T_0 , T_x , T_y) are shown in the sketches below. Remark: Grease is not pre-packed, so please perform adequate lubrication as needed.